CS2223
HW#3

DUE: Thursday, November 15

1 (8 points) \(a \) Let \(T \) be an unsorted array of \(n \) integers. Give an algorithm to find a pair \(x, y \in T \) which maximizes \(|x - y| \). If \(T = (6,13,19,3,8) \), then \(x=19 \) and \(y=3 \) would be a solution. The worst case execution time of your algorithm must be in \(O(n) \).

\(b \) Let \(T \) be a sorted array of \(n \) integers. Give an algorithm to find a pair \(x, y \in T \) which maximizes \(|x - y| \). If \(T = (3,6,8,13,19) \), then \(x=3 \) and \(y=19 \) would be a solution. The worst case execution time of your algorithm must be in \(O(1) \).

\(c \) Let \(T \) be an unsorted array of \(n \) integers. Give an algorithm to find a number \(x \) which doesn’t appear in \(T \). If \(T = (6,13,19,3,8) \), then \(x=5 \) be a solution. The worst case execution time of your algorithm must be in \(O(n) \).

\(d \) Let \(T \) be a sorted array of \(n \) integers. Give an algorithm to find a pair \(x, y \in T \) which minimizes \(|x - y| \). If \(T = (3,6,8,13,19) \), then \(x=6 \) and \(y=8 \) would be a solution. The worst case execution time of your algorithm must be in \(O(n) \).

2. (4 points) From Baase and Van Gelder’s Computer Algorithms

Suppose an algorithm does \(m^2 \) steps on an array of \(m \) elements (for any \(m \geq 1 \)). The algorithm is to be used on two arrays \(A_1 \) and \(A_2 \) (separately). The arrays contain a total of \(n \) elements. \(A_1 \) has \(k \) elements and \(A_2 \) has \(n-k \) elements (\(0 \leq k \leq n \)).

For what value(s) of \(k \) will the most work be done? For what value(s) of \(k \) will the least work be done? Justify your answers. (Remember that an example is not a proof. There is a good solution for this problem using simple calculus.)

3. (16 points) Write programs to implement a (min)-priority queue using each of the following data structures:

- Ordered array
- Unordered array
- Binary search tree
- Heap

Actually, you only need programs to implement construct and insert. For each implementation, estimate the average time to insert \(n \) elements into an empty priority queue. Describe the implementation you use, and show results supporting your estimate.