1. Guess (and verify) in linear time that \(A \) is sorted. If \(A \) is sorted, return the middle value, otherwise sort it and return the middle value.

\[
\begin{align*}
\textit{sorted} & \leftarrow \text{true} \\
\textbf{for} \ k & \leftarrow 1 \ \textbf{to} \ n-1 \ \textbf{do if} \ A[k] > A[k+1] \ \textbf{then} \ \textit{sorted} \leftarrow \text{false} \\
\textbf{if not} \ \textit{sorted} \ \textbf{then} \ \text{INSERTIONSORT}(A) \\
\textbf{return} \ A[(n+1)/2]
\end{align*}
\]

2. \(\{(1/3)^n\}, \{\lg \lg n\}, \{\lg n, \ln n\}, \{n^{1/2}, \sqrt{n} + \lg n\}, \{\sqrt{n} * (\lg n)^2\}, \{n\}, \{n^* \lg n\}, \{n^2, n^2 + \lg n\}, \{n^{1^1}\}, \{2^n\}, \{n!\} \)

3. (a) The Conjecture is true. For any \(f \), choose \(n_0 = 1 \) and \(c = 1 \). For all \(n \geq 1 \) it follows that

\[f(n) \leq f(n) \].

(b) The Conjecture is false. Choosing \(f(n) = 1 \) and \(g(n) = n \), we see that \(c_0 = 1 \) and \(n_0 = 1 \) yields that for all \(n = 1 \), \(1 = 1^* n \). Hence \(f(n) \in O(g(n)) \). But in the other direction, if \(g(n) \in O(f(n)) \), then there must exist \(c_1 \) and \(n_1 \) such that for all \(n = n_1 \), \(g(n) = n = c_1^* f(n) = c_1 \). Choosing \(n = \max\{c_1, n_1\} + 1 \) forces a contradiction.

(c) Since \(f(n) \in O(g(n)) \) and \(g(n) \in O(h(n)) \), then there exist \(c_0, n_0, c_1, n_1 \), such that \(f(n) = c_0^* g(n) \) and \(g(n) = c_1^* h(n) \) for all \(n = \max\{n_0, n_1\} \). But \(f(n) = c_0^* g(n) = c_0^* c_1^* h(n) \) for all \(n = \max\{n_0, n_1\} \). Letting \(n_2 = \max\{n_0, n_1\} \) and \(c_2 = c_0^* c_1 \) assures that \(f(n) \in O(h(n)) \).