1 (8 points) Assume you are given an array \(A \) of \(n \) integers, and the desired output is the median of \(A \). You may assume that \(n \) is odd. (The median of \(A \) is the element of \(A \) such that \((n+1)/2 \) elements of \(A \) are greater than or equal to the median and \((n+1)/2 \) elements of \(A \) are less than or equal to the median). For example, if \(n=5 \) and \(A = \{-25, 14, 22, -10, -558\} \), then the median is \(-10\). Assuming the benchmark computational operation is a pairwise comparison, describe an algorithm (you don’t need to write a program) to solve this problem which in the best-case uses \(n-1 \) pairwise comparisons.

2. (8 points) Group the following 14 functions so that \(f \) and \(g \) are in the same group if and only if \(f \in \Theta(g) \). List the groups from lowest order to highest order.

\[
\begin{array}{cccc}
n & n^{34} & 2^n & n \cdot \log n \\
\log n & \sqrt{n + \log n} & \log \log n & \sqrt{n \cdot (\log n)^2} \\
(1/3)^n & n! & n^2 & n^2 + \log n \\
\ln n & n^{1/2} & & \\
\end{array}
\]

3. (6 points) The statement \(f(n) \in O(g(n)) \) can be viewed as a relation between functions \(f \) and \(g \). Prove or give a counterexample to each of the following conjectures that this relation is reflexive, symmetric and transitive.

(a) **Conjecture 1**: For any (univariate) function \(f, f(n) \in O(f(n)) \).
(b) **Conjecture 2**: For any (univariate) functions \(f, g \), if \(f(n) \in O(g(n)) \), then \(g(n) \in O(f(n)) \).
(c) **Conjecture 3**: For any (univariate) functions \(f, g, h \), if \(f(n) \in O(g(n)) \) and \(g(n) \in O(h(n)) \), then \(f(n) \in O(h(n)) \).