1. (6 points) Order the following functions according to their rates of growth (from fastest growth to slowest). If list includes functions f and g such that $f(n) \in \Theta(g(n))$, then group them in a set, like \{ f, g \}:

\[
\begin{align*}
0.001n^4 + 3n^2 + 25 \\
1/n \\
3^{2n} \\
lgn \\
n! \\
10\log_{10}n \\
42
\end{align*}
\]

2. (8 points) Recall that for function $g: \mathbb{N} \to \mathbb{R}^+$, the set $O(g)$ was defined as

\[
\{ f \mid (\exists c)(\exists n_c)(\forall n \geq n_c) f(n) \leq cg(n) \}
\]

Prove or give a counterexample to the following conjecture which simplifies the definition.

CONJECTURE: For any $g: \mathbb{N} \to \mathbb{R}^+$, define $O'(g) = \{ f \mid (\exists c)(\forall n \in \mathbb{N}) f(n) \leq cg(n) \}$. Then $O(g) = O'(g)$.

If the CONJECTURE is true, then you need to show that for any $g: \mathbb{N} \to \mathbb{R}^+$:

- $O(g) \subseteq O'(g)$, and,
- $O'(g) \subseteq O(g)$.

If the CONJECTURE is false, then you need to show a $g: \mathbb{N} \to \mathbb{R}^+$ which belongs to exactly one of $O(g)$ and $O'(g)$.

3. (7 points)
 a. Show that testing if array $A[1..n]$ is a heap has a time complexity in $O(n)$.
 b. Show that testing if array $A[1..n]$ is a heap has a time complexity in $\Omega(n)$.

4. (10 points) Binary Search Trees, described in Chapter 12 of our text, are an important data structure. Note the definition of the height of a tree on pg. 1088 of our text.

 a. What is the maximum height of all binary search trees with n nodes? Give an example of an TREE-INSERTion sequence which yields this height.
 b. Write and execute a program to estimate the average height of all binary search trees with n nodes, assuming that all input INSERTion sequences are equally likely.
CS2223
HW#2 SOLUTIONS

1. \(n! \), \(3^n \), \(0.001n^4 + 3n^2 + 25 \), \(\{ \log n, 10 \log_{10} n \} \), \(42 \), \(1/n \)

2. Clearly if \(g \in \{ f \mid (\exists c)(\forall n \in \mathbb{N}) f(n) \leq cg(n) \} \) then choosing \(n_0 = 0 \) satisfies \(g \in \{ f \mid (\exists c)(\exists n_0)(\forall n \geq n_0) f(n) \leq cg(n) \} \).

Assume that \((\exists c)(\forall n \geq n_0) f(n) \leq cg(n) \), and let \(c^* = \max \left(c, \frac{f(0)}{g(0)}, \ldots, \frac{f(n_0)}{g(n_0)} \right) \).

There are two cases:
- \(n \leq n_0 \) Since \(c^* \geq \frac{f(n)}{g(n)} \), then \(cg(n) \geq f(n) \).
- \(n \geq n_0 \) Since \(c^* \geq c \), then \(c^* g(n) \geq cg(n) \geq f(n) \).

In either case, it follows that \((\forall n \in \mathbb{N}) c^* g(n) \geq f(n) \).

3. \(a \) Assume we’re testing if \(A \) is a (max)-heap. \(A \) is a (max)-heap if and only if every element is less than or equal to its parent.

\[
\text{IsHeap} \leftarrow \text{true}
\]

\[\text{for } i \leftarrow 2 \text{ to } n \text{ do}
\]

\[\text{if } A[i] > A[i/2] \text{ then } \text{IsHeap} \leftarrow \text{false}\]

\[
\text{return } \text{IsHeap}
\]

\(b \) Assume that there’s an algorithm to test if array \(A[1..n] \) is a heap, and the algorithm’s time complexity is not in \(\Omega(n) \). That is, the algorithm’s time complexity is less than linear. Consider the array \(A[1..n] \) such that for all \(1 \leq i \leq n \), \(A[i] = i \). When the algorithm processes \(A \) and returns \(\text{true} \), there must be some \(i^* \), \(1 \leq i^* \leq n \), such that the algorithm never examined \(A[i^*] \). Consider array \(A^* \) such that \(A^*[i] = \begin{cases} i, & \text{if } i \neq i^* \\ \infty, & \text{if } i = i^* \end{cases} \). The algorithm does the same comparisons on \(A^* \) that it did on \(A \), and it receives the same answers (since \(A^*[i^*] \) was never examined), so it returns \(\text{true} \). However, \(A^* \) is not a heap, so the algorithm is wrong, which yields a contradiction.