1. (a) \textsc{MakeNull}(S), \textsc{Insert}(a,S), \textsc{Member?}(a,S)
\((b,c) \) One possibility is to store the elements of \(S \) in the first \(k \) positions of array \(\texttt{int} \ S[n] \) in the order in which they arrive (unsorted)
- \textsc{MakeNull}(S) - \(\Theta(1) \)
- \textsc{Insert}(a,S) - \(\Theta(1) \)
- \textsc{Member?}(a,S) - \(\Theta(k) \) where \(|S|=k \)
If the array \(S \) were sorted, then the analysis would be
- \textsc{MakeNull}(S) - \(\Theta(1) \)
- \textsc{Insert}(a,S) - \(\Theta(k) \) where \(|S|=k \)
- \textsc{Member?}(a,S) - \(\Theta(\log n) \)

2. (a) \(1 \text{ sec} = c \times n^2 = c \times 1000^2 \). Thus, \(c=10^{-6} \). We solve for
\(s \text{ sec} = c \times n^2 = 10^{-6} \times 10000^2 = 10^{-6} \times 10^8 = 100 \text{ sec} \)
(b) \(1 \text{ sec} = c \times n \times \log n = c \times 1000 \times \ln 10000 = c \times 1000 \times \log_{10} 10000 / \log_{10} = c \times 3000 / \log_{10} e \)
Thus, \(c=\log_{10} e / 3000 \). We solve for
\(s \text{ sec} = c \times 10000 \times \ln 10000 = 10000 \times \ln 10000 \times \log_{10} e / 3000 = \)
\(\log_{10} 10000 = 10000 \times \frac{\log_{10} 10000}{\log_{10} e} \times \frac{\log_{10} e}{3000} = 13 \frac{1}{3} \text{ seconds.} \)