CS2223
HW#1

DUE: Thursday, November 4

1 (15 points) One algorithm to estimate the size, n, of a set of labelled objects is to select members of the set randomly, with replacement, until any object is selected a second time. If k distinct objects are drawn before the first duplicate, then we estimate n to be $2k^2 / \pi$. Test this by writing and executing a program for the following algorithm:

```
Pick a fixed $n \geq 1$.
S ← ∅
a ← random integer in the range [1,...,n]
repeat
    S ← $S \cup \{a\}$
    a ← random integer in the range [1,...,n]
until a $\in S$
return $2|S|^2 / \pi$
```

(a) What operations are performed on S?
(b) Describe a reasonable data structure to implement S.
(c) What is the worst-case time to perform each of the operations of part (a) for your data structure of part (b)? You should use Θ-notation.
(d) Time your program and try to determine the rate of growth of its execution time as a function of n. That is, for each of several values of n, execute and time your program. Try to express your program’s execution time as a function of n.

Describe your implementation (the machine and compiler you are using). Submit a listing of your program, along with evidence that it executes correctly. The evidence should include your selected values of n and your estimates of n. Is your program’s estimate of n reasonable?

2. (2 points) Do Problem 2.6 from our text. In our text, “log” denotes the natural logarithm (to the base $e=2.7182818...$).