1. Consider the following algorithm to compute the MAXIMUM and the MINIMUM elements of an array $A[1..n]$, where $n \geq 2$. We assume that all n elements of A are distinct.

```plaintext
    {Big ← $A[2]$
    Little ← $A[1]$}
else 
    {Big ← $A[1]$

for $i ← 3$ to $n$ do 
    if Big < $A[i]$ then Big ← $A[i]$
    else if Little > $A[i]$ then Little ← $A[i]$
```

We want to count the total number of executions of the comparisons

a (2 points) How many comparisons are executed in the worst-case by the above algorithm?

b (4 points) How many worst-case instances of A are there?

c (2 points) How many comparisons are executed in the best-case by the above algorithm?

d (2 points) How many best-case instances of A are there?

2. (15 points) One algorithm to estimate the size, n, of a set of labelled objects, is to select members of the set randomly, with replacement, until any object is selected a second time. If k distinct objects are drawn before the first duplicate, then we estimate n to be $2k^2 / \pi$. Test this by writing and executing a program for the following algorithm:

Pick a fixed $n \geq 1$.

$S \leftarrow \emptyset$

$a \leftarrow$ random integer in the range [1,...,n]

repeat

$S \leftarrow S \cup \{a\}$

$a \leftarrow$ random integer in the range [1,...,n]

until $a \in S$

return $2|S|^2 / \pi$
a What operations are performed on S?
b Describe a reasonable data structure to implement S.
c What is the worst-case time to perform each of the operations of part a for your data structure of part b? You should use Θ-notation.
d Time your program and try to determine the rate of growth of its execution time as a function of n. That is, for each of several values of n, execute and time your program. Try to express your program’s execution time as a function of n.

Describe your implementation (the machine and compiler you are using). Submit a listing of your program, along with evidence that it executes correctly. The evidence should include your selected values of n and your estimates of n. Are your program’s estimates of n reasonable?
1. a \(1 + 2(n-2) = 2n - 3 \)

 b In a worst-case instance, the comparison \(B \leq A[i] \) is always violated. This happens when the \text{MAXIMUM} element is among the first two elements of \(A \). There are \((n-1)! \) permutations of \(A \) in which the largest element is the first element of \(A \), and \((n-1)! \) permutations of \(A \) in which the largest element is the second element of \(A \). Hence, there are \(2(n-1)! \) worst-case instances of \(A \).

 c \(n-1 \)

 d In a best-case instance, the comparison \(B \leq A[i] \) is always satisfied. This happens if \(A[1] \) and \(A[2] \) contain the two smallest elements of \(A \), and then \(A[3..n] \) contain the \(n-2 \) largest elements in increasing order. There are exactly 2 best-case instances, one is when \(A \) is sorted in increasing order, and the other is the same instance with the first two elements swapped.

2. a \text{MAKENULL}(S), \text{INSERT}(a, S), \text{MEMBER?}(a, S)

 b, c One possibility is to store the elements of \(S \) in the first \(k \) positions of array \(\text{int} \ S[1..n] \) in the order in which they arrive (unsorted)

 \[
 \begin{align*}
 \text{MAKENULL}(S) & - \Theta(1) \\
 \text{INSERT}(a, S) & - \Theta(1) \\
 \text{MEMBER?}(a, S) & - \Theta(k) \quad \text{where} \ |S| = k
 \end{align*}
 \]

 If the array \(S \) were sorted, then the analysis would be

 \[
 \begin{align*}
 \text{MAKENULL}(S) & - \Theta(1) \\
 \text{INSERT}(a, S) & - \Theta(k) \quad \text{where} \ |S| = k \\
 \text{MEMBER?}(a, S) & - \Theta(\log n)
 \end{align*}
 \]