DUE: Friday, November 2

1 (2 points) Do Problem 1.11 from our text.

2. (6 points) Given $n \in \mathbb{N}^+$ and permutation (a_1, \ldots, a_n) of $(1, \ldots, n)$, we want an algorithm to obtain (a_1, \ldots, a_n) from $(1, \ldots, n)$. Your algorithm accepts as input $(1, \ldots, n)$ and the only data structure your algorithm can use is a stack. It must start and finish with an empty stack. The operations it can perform at any time are:
- S: remove the next element from the input and push it onto the stack
- X: pop the top element from the stack and print it.
Your algorithm will thus be a sequence of n Ss and n Xs. For example, an algorithm to obtain $(2, 4, 3, 1)$ is $SSXSSXXX$.

a) An algorithm is admissible if it never tries to pop from an empty stack and it finishes with an empty stack. Describe a linear time algorithm to test if a sequence of Ss and Xs is admissible.

b) A permutation (a_1, \ldots, a_n) is realizable if there is an admissible algorithm which prints it. For example, algorithm $SSXSSXXX$ shows that $(2, 4, 3, 1)$ is realizable. Show that $(3, 5, 7, 6, 8, 4, 9, 2, 10, 1)$ is realizable but $(3, 1, 2)$ is not.

c) What can you say about the order of the elements in the stack at any point in a computation?

Extra Credit: (4 points) Describe a predicate $P(a_i, a_j, a_k)$ such that the following theorem holds.

Theorem: A permutation (a_1, \ldots, a_n) is realizable if and only if there do not exist $1 \leq i < j < k \leq n$ such that $P(a_i, a_j, a_k)$.

3. (4 points) Adapted from Manber’s Introduction to Algorithms) Suppose that we change the coins in the American monetary system to have five types of coins: a 15¢ piece, a 23¢ piece, a 29¢ piece, a 41¢ piece and a 67¢ piece. Write a program to find a combination of these coins (if there is one) which makes up $18.08 = 1808¢$. Submit a listing of your program along with its output.
(Later in the course we will seek an algorithm to solve a generalization of this problem, the Knapsack Problem.)