1. **a** No, the argument is invalid in an interpretation in which \(p \) and \(q \) are false but \(r \) is true.

b No, the argument is invalid in an interpretation in which \(p, q \) and \(r \) are all true.

2. Let \(P(n) \) denote the predicate \(2 \mid (n^2 + 5n) \). As a basis, we note that \(P(0) \) corresponds to the fact that \(2 \mid 0 \). Assume \(P(n) \) for some fixed \(n \geq 0 \).

\[
(n+1)^2 + 5(n+1) = n^2 + 7n + 6 = (n^2 + 5n) + 2(n+3)
\]

By the Induction Hypothesis \(2 \mid (n^2 + 5n) \), and clearly \(2 \mid (n+3) \). Thus, \(2 \mid ((n^2 + 5n) + 2(n+3)) \) which implies \(2 \mid ((n+1)^2 + 5(n+1)) \). But this is \(P(n+1) \).

Hence \(P(n) \rightarrow P(n+1) \), and the theorem is proved.

3. As a basis, we note that any three lines in general position must meet in three points, and they form a triangle. Fix \(n \geq 3 \) and assume that \(n \) lines form a triangle \(\Delta \). There are two possibilities:

- If the \((n+1)\)st line (call it \(l' \)) does not intersect \(\Delta \), then the theorem holds.
- If line \(l' \) does intersect \(\Delta \), then it intersects exactly two of the lines (call them \(l_1 \) and \(l_2 \)). The points where \(l' \) intersects \(l_1 \) and \(l_2 \), as well as the intersection of \(l_1 \) and \(l_2 \) form a triangle.

In either of these two cases, the \(n+1 \) lines form a triangle.