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Ensemble learning
● Combining multiple models

♦ The basic idea
● Bagging

♦ Bias-variance decomposition, bagging with costs
● Randomization

♦ Rotation forests
● Boosting

♦ AdaBoost, the power of boosting
● Additive regression

♦ Numeric prediction, additive logistic regression
● Interpretable ensembles

♦ Option trees, alternating decision trees, logistic model trees
● Stacking
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Combining multiple models

● Basic idea:
build different “experts”, let them vote

● Advantage:
♦ often improves predictive performance

● Disadvantage:
♦ usually produces output that is very hard to analyze
♦ but: there are approaches that aim to produce a 

single comprehensible structure
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Bagging
● Combining predictions by voting/averaging

● Simplest way
● Each model receives equal weight

● “Idealized” version:
● Sample several training sets of size n

(instead of just having one training set of size n)
● Build a classifier for each training set
● Combine the classifiers’ predictions

● Learning scheme is unstable ⇒ 
almost always improves performance 

● Small change in training data can make big change in 
model (e.g. decision trees)
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Bias-variance decomposition

● Used to analyze how much selection of any 
specific training set affects performance

● Assume infinitely many classifiers,
built from different training sets of size n

● For any learning scheme,
♦ Bias = expected error of the combined

classifier on new data
♦ Variance = expected error due to the

particular training set used
● Total expected error ≈ bias + variance 
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More on bagging
● Bagging works because it reduces variance by 

voting/averaging 
♦ Note: in some pathological hypothetical situations the overall 

error might increase
♦ Usually, the more classifiers the better

● Problem: we only have one dataset!
● Solution: generate new ones of size n by sampling from 

it with replacement 
● Can help a lot if data is noisy
● Can also be applied to numeric prediction

♦ Aside: bias-variance decomposition originally only known for 
numeric prediction
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Bagging classifiers

Let n be the number of instances in the training data
For each of t iterations:

Sample n instances from training set
(with replacement)

Apply learning algorithm to the sample
Store resulting model

For each of the t models:
Predict class of instance using model

Return class that is predicted most often

Model generation

Classification
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Bagging with costs
● Bagging unpruned decision trees known to produce good 

probability estimates
♦ Where, instead of voting, the individual classifiers' 

probability estimates are averaged
♦ Note: this can also improve the success rate

● Can use this with minimum-expected cost approach for 
learning problems with costs

● Problem: not interpretable
♦ MetaCost re-labels training data using bagging with costs 

and then builds single tree
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Randomization
● Can randomize learning algorithm instead of input
● Some algorithms already have a random component: eg. 

initial weights in neural net
● Most algorithms can be randomized, eg. greedy algorithms:

♦ Pick from the N best options at random instead of always 
picking the best options

♦ Eg.: attribute selection in decision trees
● More generally applicable than bagging: e.g. random subsets 

in nearest-neighbor scheme
● Can be combined with bagging
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Rotation forests
● Bagging creates ensembles of accurate classifiers with 

relatively low diversity
♦ Bootstrap sampling creates training sets with a 

distribution that resembles the original data
● Randomness in the learning algorithm increases 

diversity but sacrifices accuracy of individual ensemble 
members

● Rotation forests have the goal of creating accurate and 
diverse ensemble members
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Rotation forests
● Combine random attribute sets, bagging and principal 

components to generate an ensemble of decision trees
● An iteration involves

♦ Randomly dividing the input attributes into k disjoint 
subsets

♦ Applying PCA to each of the k subsets in turn
♦ Learning a decision tree from the k sets of PCA 

directions
● Further increases in diversity can be achieved by 

creating a bootstrap sample in each iteration before 
applying PCA
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Boosting

● Also uses voting/averaging
● Weights models according to performance
● Iterative: new models are influenced by 

performance of previously built ones
♦ Encourage new model to become an “expert” for 

instances misclassified by earlier models
♦ Intuitive justification: models should be experts that 

complement each other
● Several variants
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AdaBoost.M1

Assign equal weight to each training instance
For t iterations:
  Apply learning algorithm to weighted dataset,

store resulting model
  Compute model’s error e on weighted dataset 
  If e = 0 or e ≥ 0.5:
    Terminate model generation
  For each instance in dataset:
    If classified correctly by model:
       Multiply instance’s weight by e/(1-e)
  Normalize weight of all instances

Model generation

Classification
Assign weight = 0 to all classes
For each of the t (or less) models:

For the class this model predicts
add –log e/(1-e) to this class’s weight

Return class with highest weight
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More on boosting I
● Boosting needs weights … but
● Can adapt learning algorithm ... or
● Can apply boosting without weights

● resample with probability determined by weights
● disadvantage: not all instances are used
● advantage: if error > 0.5, can resample again

● Stems from computational learning theory
● Theoretical result:

● training error decreases exponentially
● Also:

● works if base classifiers are not too complex, and
● their error doesn’t become too large too quickly



Data Mining: Practical Machine Learning Tools and Techniques (Chapter 8)

More on boosting II
● Continue boosting after training error = 0?
● Puzzling fact:

generalization error continues to decrease!
● Seems to contradict Occam’s Razor

● Explanation:
consider margin (confidence), not error

● Difference between estimated probability for true class 
and nearest other class (between –1 and 1)

● Boosting works with weak learners
only condition: error doesn’t exceed 0.5

● In practice, boosting sometimes overfits (in 
contrast to bagging) 
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Additive regression I
● Turns out that boosting is a greedy algorithm for fitting 

additive models
● More specifically, implements forward stagewise 

additive modeling
● Same kind of algorithm for numeric prediction:

1.Build standard regression model (eg. tree)
2.Gather residuals, learn model predicting residuals (eg. 

tree), and repeat
● To predict, simply sum up individual predictions from 

all models
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Additive regression II
● Minimizes squared error of ensemble if base learner 

minimizes squared error
● Doesn't make sense to use it with standard multiple linear 

regression, why?
● Can use it with simple linear regression to build multiple 

linear regression model
● Use cross-validation to decide when to stop
● Another trick: shrink predictions of the base models by 

multiplying with pos. constant < 1
♦ Caveat: need to start with model 0 that predicts the mean
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Additive logistic regression
● Can use the logit transformation to get algorithm for 

classification
♦ More precisely, class probability estimation
♦ Probability estimation problem is transformed into 

regression problem
♦ Regression scheme is used as base learner (eg. regression 

tree learner)
● Can use forward stagewise algorithm: at each stage, add model 

that maximizes probability of data
● If f

j
 is the jth regression model, the ensemble predicts 

probability                                         for the first class 
p1|a= 1

1exp−∑ f j a
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LogitBoost

● Maximizes probability if base learner minimizes squared error
● Difference to AdaBoost: optimizes probability/likelihood instead of 

exponential loss
● Can be adapted to multi-class problems
● Shrinking and cross-validation-based selection apply

For j = 1 to t iterations:
  For each instance a[i]:
    Set the target value for the regression to
      z[i] = (y[i] – p(1|a[i])) / [p(1|a[i]) × (1-p(1|a[i])] 
    Set the weight of instance a[i] to p(1|a[i]) × (1-p(1|a[i])
  Fit a regression model f[j] to the data with class 
    values z[i] and weights w[i]

Model generation

Classification
Predict 1st class if p(1 | a) > 0.5, otherwise predict 2nd class
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Option trees
● Ensembles are not interpretable
● Can we generate a single model?

♦ One possibility: “cloning” the ensemble by using lots of 
artificial data that is labeled by ensemble

♦ Another possibility: generating a single structure that 
represents ensemble in compact fashion

● Option tree: decision tree with option nodes
♦ Idea: follow all possible branches at option node
♦ Predictions from different branches are merged using voting 

or by averaging probability estimates
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Example

● Can be learned by modifying tree learner:
♦ Create option node if there are several equally promising splits 

(within user-specified interval)
♦ When pruning, error at option node is average error of options
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Alternating decision trees
● Can also grow option tree by incrementally adding nodes to 

it
● Structure called alternating decision tree, with splitter 

nodes and prediction nodes
♦ Prediction nodes are leaves if no splitter nodes have been 

added to them yet
♦ Standard alternating tree applies to 2-class problems
♦ To obtain prediction, filter instance down all applicable 

branches and sum predictions
● Predict one class or the other depending on whether the sum 

is positive or negative
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Example
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Growing alternating trees
● Tree is grown using a boosting algorithm

♦ Eg. LogitBoost described earlier
♦ Assume that base learner produces single conjunctive rule in each 

boosting iteration (note: rule for regression)
♦ Each rule could simply be added into the tree, including the numeric 

prediction obtained from the rule
♦ Problem: tree would grow very large very quickly
♦ Solution: base learner should only consider candidate rules that extend 

existing branches
● Extension adds splitter node and two prediction nodes (assuming 

binary splits)
♦ Standard algorithm chooses best extension among all possible 

extensions applicable to tree
♦ More efficient heuristics can be employed instead
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Logistic model trees
● Option trees may still be difficult to interpret 
● Can also use boosting to build decision trees with linear models 

at the leaves (ie. trees without options)
● Algorithm for building logistic model trees:

♦ Run LogitBoost with simple linear regression as base learner 
(choosing the best attribute in each iteration)

♦ Interrupt boosting when cross-validated performance of additive model 
no longer increases

♦ Split data (eg. as in C4.5) and resume boosting in subsets of data
♦ Prune tree using cross-validation-based pruning strategy (from CART 

tree learner)
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Stacking
● To combine predictions of base learners, don’t vote, use 

meta learner 
♦ Base learners: level-0 models
♦ Meta learner: level-1 model
♦ Predictions of base learners are input to meta learner

● Base learners are usually different schemes
● Can’t use predictions on training data to generate data for 

level-1 model!
♦ Instead use cross-validation-like scheme 

● Hard to analyze theoretically: “black magic”
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More on stacking

● If base learners can output probabilities, use 
those as input to meta learner instead

● Which algorithm to use for meta learner?
♦ In principle, any learning scheme
♦ Prefer “relatively global, smooth” model

● Base learners do most of the work
● Reduces risk of overfitting

● Stacking can be applied to numeric prediction too 
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