The purpose of this handout is to illustrate the use of the K2 algorithm to learn the topology of a Bayes Net. The algorithm is taken from [aEH93].

Consider the dataset given in [aEH93]:

<table>
<thead>
<tr>
<th>case</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Assume that x_1 is the classification target.
The K2 algorithm taken from [aEH93] is included below. This algorithm heuristically searches for the most probable belief–network structure given a database of cases.

1. **procedure** K2;
2. {Input: A set of n nodes, an ordering on the nodes, an upper bound u on the number of parents a node may have, and a database D containing m cases.}
3. {Output: For each node, a printout of the parents of the node.}
4. for $i := 1$ to n do
5. $\pi_i := \emptyset$;
6. $P_{old} := f(i, \pi_i)$; {This function is computed using Equation 20.}
7. OKToProceed := true;
8. While OKToProceed and $|\pi_i| < u$ do
9. let z be the node in Pred$(x_i) - \pi_i$ that maximizes $f(i, \pi_i \cup \{z\})$;
10. $P_{new} := f(i, \pi_i \cup \{z\})$;
11. if $P_{new} > P_{old}$ then
12. $P_{old} := P_{new}$;
13. $\pi_i := \pi_i \cup \{z\}$;
14. else OKToProceed := false;
15. write('Node: ', x_i, ' Parent of x_i: ', π_i);
16. end {while};
17. end {for};
18. end {K2};

Equation 20 is included below:

$$f(i, \pi_i) = \prod_{j=1}^{q_i} \frac{(r_i - 1)!}{(N_{ij} + r_i - 1)!} \prod_{k=1}^{r_i} \alpha_{ijk}!$$

where:

- π_i : set of parents of node x_i
- $q_i = |\phi_i|$
- ϕ_i : list of all possible instantiations of the parents of x_i in database D. That is, if p_1, \ldots, p_s are the parents of x_i then ϕ_i is the Cartesian product $\{v_{p_1}^{p_1}, \ldots, v_{p_1}^{p_1}\} \times \ldots \times \{v_{p_s}^{p_s}, \ldots, v_{p_s}^{p_s}\}$ of all the possible values of attributes p_1 through p_s.
- $r_i = |V_i|$
- V_i : list of all possible values of the attribute x_i
- α_{ijk} : number of cases (i.e. instances) in D in which the attribute x_i is instantiated with its k^{th} value, and the parents of x_i in π_i are instantiated with the j^{th} instantiation in ϕ_i.
- $N_{ij} = \sum_{k=1}^{r_i} \alpha_{ijk}$. That is, the number of instances in the database in which the parents of x_i in π_i are instantiated with the j^{th} instantiation in ϕ_i.

The informal intuition here is that $f(i, \pi_i)$ is the probability of the database D given that the parents of x_i are π_i.

Below, we follow the K2 algorithm over the database above.

Inputs:

- The set of $n = 3$ nodes $\{x_1, x_2, x_3\}$,
- the ordering on the nodes x_1, x_2, x_3. We assume that x_1 is the classification target. As such the Weka system would place it first on the node ordering so that it can be the parent of each of the predicting attributes.
- the upper bound $u = 2$ on the number of parents a node may have, and
- the database D above containing $m = 10$ cases.

K2 Algorithm.

$i = 1$: Note that for $i = 1$, the attribute under consideration is x_1. Here, $r_1 = 2$ since x_1 has two possible values $\{0,1\}$.

1. $\pi_1 := \emptyset$

2. $P_{old} := f(1, \emptyset) = \prod_{j=1}^{q_1} \frac{(r_1-1)!}{(N_{1j}+r_1-1)!} \prod_{k=1}^{r_1} \alpha_{1jk}!$

Let’s compute the necessary values for this formula.

- Since $\pi_1 = \emptyset$ then $q_1 = 0$. Note that the product ranges from $j = 1$ to $j = 0$. The standard convention for a product with an upper limit smaller than the lower limit is that the value of the product is equal to 1. However, this convention wouldn’t work here since regardless of the value of i, $f(i, \emptyset) = 1$. Since this value denotes a probability, this would imply that the best option for each node is to have no parents. Hence, j will be ignored in the formula above, but not i or k. The example on page 13 of [aEH93] shows that this is the authors’ intended interpretation of this formula.

- $\alpha_{1,1} = 5$: # of cases with $x_1 = 0$ (cases 3,5,6,8,10)
- $\alpha_{1,2} = 5$: # of cases with $x_1 = 1$ (cases 1,2,4,7,9)
- $N_{1,1} = \alpha_{1,1} + \alpha_{1,2} = 10$

Hence,

$$P_{old} := f(1, \emptyset) = \frac{(r_1-1)!}{(N_{1,1}+r_1-1)!} \prod_{k=1}^{r_1} \alpha_{1,k}! = \frac{(2-1)!}{(11+2-1)!} \prod_{k=1}^{2} \alpha_{1,k}! = \frac{1}{11!} * 5! * 5! = 1/2772$$

3. Since $Pred(x_1) = \emptyset$, then the iteration for $i = 1$ ends here with $\pi_1 = \emptyset$.

3
Note that for $i = 2$, the attribute under consideration is x_2. Here, $r_2 = 2$ since x_2 has two possible values $\{0,1\}$.

1. $\pi_2 := \emptyset$

2. $P_{\text{old}} := f(2, \emptyset) = \prod_{j=1}^{q_2} \frac{(r_2-1)!}{(N_{j}+r_2-1)!} \prod_{k=1}^{r_2} \alpha_{2jk}!$

Let’s compute the necessary values for this formula.

- Since $\pi_2 = \emptyset$ then $q_2 = 0$. Note that the product ranges from $j = 1$ to $j = 0$. The standard convention for a product with an upper limit smaller than the lower limit is that the value of the product is equal to 1. However, this convention wouldn’t work here since regardless of the value of i, $f(i, \emptyset) = 1$. Since this value denotes a probability, this would imply that the best option for each node is to have no parents.

Hence, j will be ignored in the formula above, but not i or k. The example on page 13 of [aEH93] shows that this is the authors’ intended interpretation of this formula.

- $\alpha_{2,1} = 5$: # of cases with $x_2 = 0$ (cases 1,3,5,8,10)
- $\alpha_{2,2} = 5$: # of cases with $x_2 = 1$ (cases 2,4,6,7,9)
- $N_{2} = \alpha_{2,1} + \alpha_{2,2} = 10$

Hence,

$$P_{\text{old}} := f(2, \emptyset) = \frac{(r_2-1)!}{(N_{2}+r_2-1)!} \prod_{k=1}^{r_2} \alpha_{2jk}! = \frac{(2-1)!}{(N_{2}+2-1)!} \prod_{k=1}^{2} \alpha_{2jk}! = \frac{1!}{1!} * 5! = 1/2772$$

3. Since $\text{Pred}(x_2) = \{x_1\}$, then the only iteration for $i = 2$ goes with $z = x_1$.

$$P_{\text{new}} := f(2, \pi_2 \cup \{x_1\}) = f(2, \{x_1\}) = \prod_{j=1}^{q_2} \frac{(r_2-1)!}{(N_{j}+r_2-1)!} \prod_{k=1}^{r_2} \alpha_{2jk}!$$

- ϕ_2: list of unique π-instantiations of $\{x_1\}$ in $D = ((x_1 = 0), (x_1 = 1))$
- $q_2 = |\phi_2| = 2$
- $\alpha_{211} = 4$: # of cases with $x_1 = 0$ and $x_2 = 0$ (cases 3,5,8,10)
- $\alpha_{212} = 1$: # of cases with $x_1 = 0$ and $x_2 = 1$ (case 6)
- $\alpha_{221} = 1$: # of cases with $x_1 = 1$ and $x_2 = 0$ (case 1)
- $\alpha_{222} = 4$: # of cases with $x_1 = 1$ and $x_2 = 1$ (case 2,4,7,9)
- $N_{21} = \alpha_{211} + \alpha_{212} = 5$
- $N_{22} = \alpha_{221} + \alpha_{222} = 5$

$$P_{\text{new}} = \prod_{j=1}^{q_2} \frac{(r_2-1)!}{(N_{j}+r_2-1)!} \prod_{k=1}^{r_2} \alpha_{2jk}! = \frac{(2-1)!}{(5+2-1)!} * \prod_{k=1}^{2} \alpha_{2jk}! * \frac{(2-1)!}{(5+2-1)!} * \prod_{k=1}^{2} \alpha_{2jk}!$$

$$= \frac{1!}{1!} * \alpha_{211}! * \frac{1!}{1!} * \alpha_{212}! * \frac{1!}{1!} * \alpha_{221}! * \alpha_{222}! = \frac{1!}{1!} * 4! * 1! * \frac{1!}{1!} * 4! * \frac{1!}{1!} * 4! = \frac{1}{6} * 4! * 1! * \frac{1}{6} * 4! * \frac{1}{6} * 4! = 1/900$$

4. Since $P_{\text{new}} = 1/900 > P_{\text{old}} = 1/2772$ then the iteration for $i = 2$ ends with $\pi_2 = \{x_1\}$.

4
Note that for $i = 3$, the attribute under consideration is x_3. Here, $r_3 = 2$ since x_3 has two possible values \{0,1\}.

1. $\pi_3 := \emptyset$

2. $P_{old} := f(3, \emptyset) = \prod_{j=1}^{q_3} \frac{(r_3-1)!}{(N_{ij}+r_3-1)!} \prod_{k=1}^{r_3} \alpha_{3jk}$!

Let’s compute the necessary values for this formula.

- Since $\pi_3 = \emptyset$ then $q_3 = 0$. Note that the product ranges from $j = 1$ to $j = 0$. The standard convention for a product with an upper limit smaller than the lower limit is that the value of the product is equal to 1. However, this convention wouldn’t work here since regardless of the value of i, $f(i, \emptyset) = 1$. Since this value denotes a probability, this would imply that the best option for each node is to have no parents. Hence, j will be ignored in the formula above, but not i or k. The example on page 13 of [aEH93] shows that this is the authors’ intended interpretation of this formula.

- $\alpha_{3,1} = 4$: # of cases with $x_3 = 0$ (cases 1,5,8,10)
- $\alpha_{3,2} = 6$: # of cases with $x_3 = 1$ (cases 2,3,4,6,7,9)
- $N_{3,l} = \alpha_{3,1} + \alpha_{3,2} = 10$

Hence,

$$P_{old} := f(3, \emptyset) = \frac{(r_3-1)!}{(N_{3,l}+r_3-1)!} \prod_{k=1}^{r_3} \alpha_{3jk}! = \frac{(2-1)!}{(5+2-1)!} \prod_{k=1}^{2} \alpha_{3jk}! = \frac{1}{11} \times 4! \times 6! = 1/2310$$

3. Note that $Pred(x_3) = \{x_1, x_2\}$. Initially, $\pi_3 = \emptyset$. We need to compute $\arg\max(f(3, \pi_3 \cup \{x_1\}), f(3, \pi_3 \cup \{x_2\}))$.

- $f(3, \pi_3 \cup \{x_1\}) = f(3, \{x_1\}) = \prod_{j=1}^{q_3} \frac{(r_3-1)!}{(N_{ij}+r_3-1)!} \prod_{k=1}^{r_3} \alpha_{3jk}!$
 - ϕ_3: list of unique π-instantiations of $\{x_1\}$ in $D = ((x_1 = 0), (x_1 = 1))$
 - $q_3 = |\phi_3| = 2$
 - $\alpha_{311} = 3$: # of cases with $x_1 = 0$ and $x_3 = 0$ (cases 5,8,10)
 - $\alpha_{312} = 2$: # of cases with $x_1 = 0$ and $x_3 = 1$ (case 3,6)
 - $\alpha_{321} = 1$: # of cases with $x_1 = 1$ and $x_3 = 0$ (case 1)
 - $\alpha_{322} = 4$: # of cases with $x_1 = 1$ and $x_3 = 1$ (case 2,4,7,9)
 - $N_{31} = \alpha_{311} + \alpha_{312} = 5$
 - $N_{32} = \alpha_{321} + \alpha_{322} = 5$

$$f(3, \{x_1\}) = \prod_{j=1}^{q_3} \frac{(r_3-1)!}{(N_{ij}+r_3-1)!} \prod_{k=1}^{r_3} \alpha_{3jk}! = \frac{(2-1)!}{(5+2-1)!} \prod_{k=1}^{2} \alpha_{3jk}! = \frac{1}{6!} \times 4! \times 2! \times 1! = \frac{1}{5} \times 1/6 = 1/1800$$

- $f(3, \pi_3 \cup \{x_2\}) = \prod_{j=1}^{q_3} \frac{(r_3-1)!}{(N_{ij}+r_3-1)!} \prod_{k=1}^{r_3} \alpha_{3jk}!$
 - ϕ_3: list of unique π-instantiations of $\{x_2\}$ in $D = ((x_2 = 0), (x_2 = 1))$
 - $q_3 = |\phi_3| = 2$
 - $\alpha_{311} = 4$: # of cases with $x_2 = 0$ and $x_3 = 0$ (cases 1,5,8,10)
 - $\alpha_{312} = 1$: # of cases with $x_2 = 0$ and $x_3 = 1$ (case 3)
Now, the next iteration of the algorithm for

\[f(3, \{x_2\}) = \prod_{j=1}^{q_3} \frac{(r_3-1)!}{(N_{df}+r_3-1)!} \prod_{k=1}^{r_3} \alpha_{3jk}! = \frac{(2-1)!}{(4+2-1)!} \cdot \prod_{k=1}^{2} \alpha_{31k}! \cdot \frac{(2-1)!}{(4+2-1)!} \cdot \prod_{k=1}^{2} \alpha_{32k}! \]

Here we assume that 0! = 1

4. Since \(f(3, \{x_2\}) = 1/180 > f(3, \{x_1\}) = 1/1800 \) then \(z = x_2 \). Also, since \(f(3, \{x_2\}) = 1/180 > P_{old} = f(3, \emptyset) = 1/2310 \), then \(\pi_3 = \{x_2\} \), \(P_{old} := P_{new} = 1/180 \).

5. Now, the next iteration of the algorithm for \(i = 3 \), considers adding the remaining predecessor of \(x_3 \), namely \(x_1 \), to the parents of \(x_3 \).

\[f(3, \pi_3 \cup \{x_1\}) = f(3, \{x_1, x_2\}) = \prod_{j=1}^{q_3} \frac{(r_3-1)!}{(N_{df}+r_3-1)!} \prod_{k=1}^{r_3} \alpha_{3jk}! \]

- \(\phi_3 \): list of unique \(\pi \)-instantiations of \(\{x_1, x_2\} \) in \(D = ((x_1 = 0, x_2 = 0), (x_1 = 0, x_2 = 1), (x_1 = 1, x_2 = 0), (x_1 = 1, x_2 = 1)) \)
 - \(q_3 = |\phi_3| = 4 \)
 - \(\alpha_{311} = 3: \# \) of cases with \(x_1 = 0, x_2 = 0 \) and \(x_3 = 0 \) (cases 5,8,10)
 - \(\alpha_{312} = 1: \# \) of cases with \(x_1 = 0, x_2 = 0 \) and \(x_3 = 1 \) (case 3)
 - \(\alpha_{321} = 0: \# \) of cases with \(x_1 = 0, x_2 = 1 \) and \(x_3 = 0 \) (no case)
 - \(\alpha_{322} = 1: \# \) of cases with \(x_1 = 0, x_2 = 1 \) and \(x_3 = 1 \) (case 6)
 - \(\alpha_{331} = 1: \# \) of cases with \(x_1 = 1, x_2 = 0 \) and \(x_3 = 0 \) (case 1)
 - \(\alpha_{332} = 0: \# \) of cases with \(x_1 = 1, x_2 = 0 \) and \(x_3 = 1 \) (no case)
 - \(\alpha_{341} = 0: \# \) of cases with \(x_1 = 1, x_2 = 1 \) and \(x_3 = 0 \) (no case)
 - \(\alpha_{342} = 4: \# \) of cases with \(x_1 = 1, x_2 = 1 \) and \(x_3 = 1 \) (case 2,4,7,9)
 - \(N_{31} = \alpha_{311} + \alpha_{312} = 4 \)
 - \(N_{32} = \alpha_{321} + \alpha_{322} = 1 \)
 - \(N_{33} = \alpha_{331} + \alpha_{332} = 1 \)
 - \(N_{34} = \alpha_{341} + \alpha_{342} = 4 \)

\[f(3, \{x_1, x_2\}) = \prod_{j=1}^{q_3} \frac{(r_3-1)!}{(N_{df}+r_3-1)!} \prod_{k=1}^{r_3} \alpha_{3jk}! = \frac{(2-1)!}{(4+2-1)!} \cdot \prod_{k=1}^{2} \alpha_{31k}! \cdot \frac{(2-1)!}{(4+2-1)!} \cdot \prod_{k=1}^{2} \alpha_{32k}! \cdot \frac{(2-1)!}{(4+2-1)!} \cdot \prod_{k=1}^{2} \alpha_{33k}! \cdot \frac{(2-1)!}{(4+2-1)!} \cdot \prod_{k=1}^{2} \alpha_{34k}! \]

\(= \frac{1}{3!} \cdot \alpha_{311}! \cdot \alpha_{312}! \cdot \frac{1}{2!} \cdot \alpha_{321}! \cdot \alpha_{322}! \cdot \frac{1}{2!} \cdot \alpha_{331}! \cdot \alpha_{332}! \cdot \frac{1}{2!} \cdot \alpha_{341}! \cdot \alpha_{342}! \)

\(= \frac{1}{3!} \cdot 3! \cdot 1! \cdot \frac{1}{2!} \cdot 0! \cdot 1! \cdot \frac{1}{2!} \cdot 1! \cdot 0! \cdot \frac{1}{2!} \cdot 0! \cdot 4! \cdot \frac{1}{5!} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{5} = 1/400 \)

6. Since \(P_{new} = 1/400 < P_{old} = 1/180 \) then the iteration for \(i = 3 \) ends with \(\pi_3 = \{x_2\} \).
Outputs: For each node, a printout of the parents of the node.

Node: x_1, Parent of $x_1: \pi_1 = \emptyset$
Node: x_2, Parent of $x_2: \pi_2 = \{x_1\}$
Node: x_3, Parent of $x_3: \pi_3 = \{x_2\}$

This concludes the run of K2 over the database D. The learned topology is

$$x_1 \rightarrow x_2 \rightarrow x_3$$

References