
Dataset:

@relation credit-data @attribute credit_history {bad, unknown, good} @attribute debt {low, high} @attribute collateral {none, adequate} @attribute income {0-15, 15-35, >35} @attribute risk {low, moderate, high}

@data				
bad,	low,	none,	0-15,	high
unknown,	high,	none,	15-35,	high
unknown,	low,	none,	15-35,	moderate
bad,	low,	none,	15-35,	moderate
unknown,	low,	adequate,	>35,	low
unknown,	low,	none,	>35,	low
unknown,	high,	none,	0-15,	high
bad,	low,	adequate,	>35,	moderate
good,	low,	none,	>35,	low
good,	high,	adequate,	>35,	low
good,	high,	none,	0-15,	high
good,	high,	none,	15-35,	moderate
good,	high,	none,	>35,	low
bad,	high,	none,	15-35,	high

Bayes Net Construction:

Constructing a Bayes Net model over the above credit-data when the topology of the net is given:

We construct Probability Distribution Tables from the data:

RISK			
high	moderate	low	
(5+1)/17	(4+1)/17	(5+1)/17	

COLLATERAL		
none	adequate	
(11+1)/16	(3+1)/16	

	DEBT		
RISK	low	high	
high	(1+1)/7	(4+1)/7	
moderate	(3+1)/6	(1+1)/6	
low	(3+1)/7	(2+1)/7	

	CREDIT-HISTORY			
DEBT	bad	unknown	good	
low	(3+1)/10	(3+1)/10	(1+1)/10	
high	(1+1)/10	(2+1)/10	(4+1)/10	

		INCOME		
DEBT	COLLATERAL	0-15	15-35	>35
low	none	(1+1)/8	(2+1)/8	(2+1)/8
low	adequate	(0+1)/5	(0+1)/5	(2+1)/5
high	none	(2+1)/9	(3+1)/9	(1+1)/9
high	adequate	(0+1)/4	(0+1)/4	(1+1)/4

Classification using the Bayesian Net: Using the above Bayesian Net to classify a new instance:

Credit-History	Debt	Collateral	Income	Risk
?	low	adequate	?	?

predicted classification= argmax P(Risk=v | Debt=low & Collateral=adequate)

- P(Debt=low & Collateral=adequate | Risk=v) * P(Risk=v)
- v P(Debt=low & Collateral=adequate)
- = argmax P(Debt=low & Collateral=adequate | Risk=v) * P(Risk=v) v
- = argmax P(Debt=low|Risk=v)*P(Collateral=adequate|Risk=v)*P(Risk=v) v

= argmax P(Debt=low|Risk=v)*P(Collateral=adequate)*P(Risk=v) v Now we calculate the values of the above expression for each possible value v of Risk:

v = low: P(Debt=low|Risk=v)*P(Collateral=adequate)*P(Risk=v)

= P(Debt=low|Risk=low)*P(Collateral=adequate)*P(Risk=low)

- $=(4/7)^{*}(4/16)^{*}(6/17)$
- = 0.0504

v = moderate: P(Debt=low|Risk=v)*P(Collateral=adequate)*P(Risk=v)

= P(Debt=low|Risk=moderate)*P(Collateral=adequate)*P(Risk=moderate)

=(4/6)*(4/16)*(5/17)

= 0.0490

v = high: P(Debt=low|Risk=v)*P(Collateral=adequate)*P(Risk=v)

= P(Debt=low|Risk=high)*P(Collateral=adequate)*P(Risk=high) = (2/7)*(4/16)*(6/17) = 0.0252

Hence, the predicted value by the Bayes Net classifier is Risk=low.

[Note that the value of P(Collateral=adequate) is independent of the what value v of Risk is under consideration. Hence, it would have sufficed above to use the expression P(Debt=low|Risk=v)*P(Risk=v) instead of P(Debt=low|Risk=v)*P(Collateral=adequate)*P(Risk=v) to decide what value v of Risk would be predicted by the Bayes Net Classifier.]