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A Unified Theory of Learning, Doing and Teaching Hierarchical Tasks:
The Learn-Do-Teach Challenge for Collaborative Agents

Overview: This research will result in new fundamental computational principles and algorithms enabling
autonomous agents and robots to collaborate with humans and each other in a broad range of situations in
home, commercial and hazardous environments.

The immediate objective of this project is to develop a unified theory of learning, doing and teaching

complex hierarchical tasks, such as preparing a meal, rotating the tires on a car, or shutting down a power
system. Hierarchy is important because humans deal with complex tasks by breaking them down into
subtasks. A unified theory is needed in order to build collaborative agents and robots that can, like human
collaborators, dynamically and seamlessly shift between learning, doing and teaching such tasks—or parts
of them—as the situation demands. For example, consider a disaster response situation, in which a human
located at a safe distance teaches a robot how to safely shut down a power system. In order to complete
its mission, the robot might later need the assistance of people inside the hazardous area and will therefore
need to teach them how to perform parts of its assigned task.

In a unified theory, the same representations and processes are used for learning, doing and teaching.
We use hierarchical task networks (HTNs) as the core representation of complex tasks and apply reflection

and theory of mind to model pedagogical goals and strategies as meta-tasks and meta-plans.
Since humans will interact with our agents as both teachers and learners, the task representation and

algorithms in our theory will be informed by current research on human pedagogy. Both computational
simulations and human studies will be used to evaluate the theory.

Keywords: collaborative agents; intelligent tutoring; learning from demonstration; learning from instruc-
tions; hierarchical task networks; theory of mind

Intellectual Merit: This work will transform the landscape of research on collaborative agents and robots,
which is currently divided into disconnected subfields, such as learning from demonstration, learning from

instructions, and intelligent tutoring systems, each of which looks at learning, doing and teaching in iso-
lation. Because current approaches in each of these subfields are mostly incompatible, they cannot easily
be combined to achieve the type of flexible collaboration described above. This research will provide the
needed unifying theory, starting with HTNs. This work will also contribute to the fundamental computa-
tional understanding of how humans learn and teach procedural knowledge.

The investigators are well qualified for this work, as they have made significant contributions to, and thus
understand the problems in, all three of the subfields mentioned above. They have also already implemented
a proof of concept system for learning, using and teaching HTNs.

Broader Impacts: Autonomous agents and robots that interact with humans in diverse environments are the
next step in the evolution of automation technology. Although such agents and robots will have some basic
capabilities builtin, their task repertoire will also need to be extended “in the field” via collaboration with
humans or other agents. Basic research to make this possible will give the U.S. a competitive advantage
in the new industries arising from this technology. Also, by developing computational models of human
pedagogical theories, this project can contribute to improving human pedagogy.

A substantial part of the research described here will directly contribute to the training of graduate and
undergraduate engineering students, including women and underrepresented minorities. The results will be
widely disseminated through scientific publication and open-source software.

Visibility and interest in a unified theory of hierarchical tasks within the broader research community
will be raised via a novel and engaging research competition, called the Learn-Do-Teach Challenge, in
which an autonomous software agent learns a task from a human, does the task, and then teaches it to
another human and to another copy of itself.
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1 Introduction
What does it mean to “know how to do” something, such as preparing a meal, rotating the tires on a car,
or shutting down a power system? For a human, this usually means being able not only to perform the task,
but also to teach it to someone else, and often that the task was learned from someone else in the first place.
For machines, however, this is generally not true. Machines have long been able to perform complex tasks
based on their programming without being able either to learn such tasks from humans or teach them to
humans. Advances have been made in machines that learn, e.g., machine learning algorithms, and machines
that teach, e.g., intelligent tutoring systems. However, these research subfields have for the most part been
isolated from each other and have used incompatible approaches. The overall, long-term goal of this work
is to increase the synergy between these separate research threads for both scientific and practical benefits.

The immediate objective of this project is to
learn!
:(a):

teach!
:(d):

do!
:(f):

agent"

human"

agent’"
teach!
:(c):

do!!(b):

do!
:(e):

human’"

Figure 1: The Learn-Do-Teach Challenge.

develop a unified theory of learning, doing and
teaching complex hierarchical tasks. Hierarchy is
important because humans deal with complex tasks
by breaking them down into subtasks. Figure 1
shows what an agent based on a unified theory
should be able to do: (a) learn a new task from
a human, (b) do the task, and then teach it to (c)
another copy of itself (i.e., based on the same the-
ory) and (d) another human. For details on (e) and
(f), see Section 4.4.

The foundation of this unification is to view teaching and learning as kinds of collaboration, i.e., to
model the teacher and learner as two participants in a collaborative interaction in which the shared goal is
increase the learner’s abilities.

The practical motivation for a unified theory is in order to build collaborative agents and robots that
can, like human collaborators, dynamically and seamlessly shift between learning, doing and teaching such
tasks—or parts of them—as the situation demands. For example, consider a disaster response situation, in
which an expert human located at a safe distance teaches a robot how to safely shut down a power system.
In order to complete its mission, the robot might later need the assistance of workers inside the emergency
area and will therefore need to teach them how to perform parts of its assigned task. Or imagine a domestic
robot being replaced by a newer model from another company teaching the new robot what it learned from
the householder.

Since the focus of this research is on cognitive rather than physical abilities, it applies to both software
agents and robots. For simplicity, in the remainder of this document we will use the term agent to refer to
both autonomous software agents and robots.

Since humans will interact with our agents as both teachers and learners, the task representation and
algorithms in our theory will be informed by current research on human pedagogy. Our work will also
contribute to the computational understanding of how humans learn and teach procedural knowledge.

We begin below by reviewing work by the PIs and others in three key related subfields: collaborative
agents, intelligent tutoring systems, and learning from demonstration and instructions. Current approaches
in each of these subfields are mostly incompatible and thus will not together achieve the goal of flexible
collaboration discussed above without a new unified theory.

1



To concretely illustrate what we mean by learning, doing and teaching based on a unified theory, we
have implemented a proof of concept system and present a sequence of interaction walkthroughs with this
system. To evaluate our proposed work, we will use both computational simulations and human studies,
including a novel and engaging research competition, called the Learn-Do-Teach Challenge (Section 4.4).

There is no Results from Prior NSF Support section below because neither PI has received NSF funding
with a start date in the past five years.

2 Related Work
The inspiration for this project grew out of the investigators’ research experience in the three closely related
subfields discussed below. Each of these subfields contains theories and systems that either do complex
hierarchical tasks collaboratively, learn and do them, or do and teach them, but not all three. We also discuss
two recent research efforts that take a learn-do-teach approach with more limited task representations.

2.1 Collaborative Agents
Collaboration is a process in which two or more participants coordinate their actions toward achieving
shared goals. In this proposal, as in most of our previous research, we focus on two-party collaborations.
Starting in the early 1990s, we extended and implemented a computational model of collaborative interaction
based on SharedPlans discourse theory [22, 23, 24, 35]. The main contribution of this theory was to elucidate
how, in task-oriented collaborations, the structure of the dialogue is governed by the underlying hierarchical
task structure—see Figure 5 for an example.

Our research has resulted in two general-purpose tools, Collagen [47] and its open-source successor,
Disco [49], which have been used by the investigators and others to build more than a dozen collaborative
software agents, including an air travel planning assistant [46], an email assistant [25], a VCR programming
assistant [57], a power system operation assistant [52], a gas turbine engine operation tutor [14], a flight
path planning assistant [11], a recycling resource allocation assistant, a software design tool assistant, a
programmable thermostat helper [16], a mixed-initiative multimodal form filling assistant and a robot host-
ing system [58]. The proof of concept system described in Section 4.1 was implemented using Disco (see
Section 3).

Ferguson and Allen [1, 17, 18] and Bohus and Rudnicky [5] have also had long-running research projects
focused on building collaborative software agents using hierarchical task models. Similar concepts have
been applied to human-robot collaboration by Breazeal [27] and the investigators [43, 48].

In the next two sections, we describe how we applied our foundational research on collaborative agents
first to intelligent tutoring systems (where the agent teaches the human) and then to learning from demon-
stration and instructions (where the human teaches the agent).

2.2 Intelligent Tutoring Systems
The intelligent tutoring systems most related to this project are those con-

Figure 2: STEVE.

cerned with teaching procedural knowledge. The archetype of such sys-
tems is STEVE [50], shown in Figure 2, an animated 3D software agent
for teaching the complex operational and maintenance procedures associ-
ated with gas turbine engines on naval vessels. STEVE represented these
procedures hierarchically and taught them in a shared virtual environment
where both STEVE and the human student could perform and observe all
actions. There was also communication between STEVE and the stu-
dent to guide the learning process. However, this communication was not
based on a general model of collaborative dialogue.
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Figure 3: Hierarchical task model for tire rotation (to reduce clutter, most of the recipe names have been
omitted and repetitive parts of the model have been replaced by ellipses).

Around 2000, the investigators began working with the main architect of STEVE, Jeff Rickel, with the
goal of “Building a Bridge between Intelligent Tutoring and Collaborative Dialogue Systems” [51]. This
led to a reimplementation of the cognitive parts of STEVE using Collagen [53] and to the central concept in
the unified theory of this proposal, which is to reflectively model learning as a collaborative meta-task (as
in Section 4.1.1). Other intelligent tutoring systems following in STEVE’s footsteps include Lester et al.’s
explanatory lifelike avatars [33] and the virtual training agents of Mendez and de Antonio [15].

2.3 Learning from Demonstration and Instructions
Historically, learning from demonstration [4] and learning from instruc-

Figure 4: Tire rotation.

tions [28, 36] developed separately, primarily as subfields of robotics
and natural language processing, respectively. However, we group these
two techniques together here because in most situations, interactive learn-
ing of complex procedural knowledge is best achieved using a combi-
nation of demonstration (actions) and instructions (utterances), and our
unified theory supports this combination.

In a current research project [41], the investigators are developing
algorithms and user interfaces for the PR2 robot in Figure 4 to learn the
hierarchical structure of complex tasks, such as the tire rotation proce-
dure in Figure 3, from a human teacher via a combination of demonstration and instructions. We are using
Disco as the task representation in this current project. However, once the robot has learned a task, it is not
able to teach it to another robot or human. Simply put, the goal of this new research is make it possible for
the robot to teach what it has learned.

Most other work on learning from demonstration and/or instructions has not used hierarchical task rep-
resentations. Two notable exceptions are [38], which is based on the Soar architecture, and [54], which
combines demonstration and instructions. Neither of these systems both learns and teaches.

2.4 Other Learn-Do-Teach Research
Several other researchers have recently also come to the conclusion that learning, doing and teaching proce-
dural knowledge need to be unified, but have applied it to simpler task representations.

Working within the reinforcement learning paradigm, Taylor [59, 62] uses action suggestion as a natural
and theoretically unified method for humans or agents to teach agents and for agents to teach humans or
agents. However, reinforcement is generally not an efficient approach for humans to learn or teach sequential
procedures, because it uses a state-based action policy. This works well for a reactive application, such as
playing Pac-Man (which Taylor uses in his experiments), but does not scale to complex hierarchical tasks.

Scorce et al. [56] motivate the need for a robot to first learn a task from one human and then teach it
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to another human by the crew turnover problem on the International Space Station. However, their work is
limited to simple linear plans. Furthermore, their work focuses on the human-robot interaction mechanisms,
such as speech commands, rather than an underlying theoretical unification.

We also need to say something here about generic cognitive architectures, such as Soar [29], ACT-R
[3] and ICARUS [30]. Such architectures seek a much more ambitious theoretical unification than we do,
i.e., not just learning, doing and teaching, and not just hierarchical tasks, but all of cognition. Cognitive
architectures therefore model perception, memory and other phenomena that are abstracted away at our
level of theory. Practically speaking, although there have been many software agents built using these
cognitive architectures, none to our knowledge can currently pass the Learn-Do-Teach Challenge described
in Section 4.4; however, we hope the challenge will motivate the creation of such agents in the future.

2.5 Human Pedagogical Theory
Many psychologists and cognitive scientists have studied human teaching and learning as two sides of the
same process, and have built empirically-based theoretical models at various levels of detail. For our pro-
posed work, the most relevant branch of this research concerns identifying pedagogical dialogue moves
[12, 20] and strategies [7]. Dialogue moves are the lowest level of interaction analysis and include, for
example, student question categories, such as: enablement (what action allows another action to occur?),
instrumental (what actions accomplish a goal?) and expectational (why did the expected action not oc-
cur?). Pedagogical strategies are recurring, larger phases of a teaching session, such as modeling (teacher
does all/most of the task), scaffolding (teacher only intervenes when learner needs help) and fading (learner
performs task independently).

See Section 4.3.4 for a discussion of how this human pedagogical theory will inform our research.
To assist us, we have retained a prominent member of this research community, Dr. Natalie Person, as a
consultant to this project (see budget justification).

3 Disco: HTNs and Collaborative Dialogue
We propose to use our existing open-source collaboration manager, Disco [49], as the computational plat-
form for our research. This section introduces the related technical terminology and notational conventions
necessary to understand the rest of this document.

3.1 Hierarchical Task Networks
Hierarchical task networks (HTNs) are a common and convenient representation for procedural knowledge
about hierarchical tasks. Disco uses the ANSI/CEA-2018 standard [44] for HTNs, whose definition was led
by PI Rich. The diagram on the right side of Figure 5 shows the simple example HTN that will be used
throughout this proposal. To avoid distracting details, the tasks in this model have abstract names, such as
A, B and C. Figure 3 is a more realistic HTN from the car maintenance domain.

An HTN is essentially a set of task decomposition rules, commonly called recipes, each of which (e.g.,
r1 in Figure 5) decomposes a non-primitive task (e.g., A) into a sequence of primitive and/or non-primitive
tasks (e.g., B and C), which are called the steps of the recipe. In this proof of concept, all recipes are totally
ordered, as indicated by the arrows between the steps. Additional features of HTNs in ANSI/CEA-2018 will
be discussed in Section 4.3.1.

The complete set of recipes that recursively decompose a given non-primitive task, such as A, into
primitive tasks, such as d, e, f, g, h and i, is conventionally drawn as a tree, such as in Figure 5, with A
at the root and the primitives are at the fringe. The dotted lines in Figure 5 indicate that r2 and r3 are two
alternative recipes for (ways to decompose) B. This structure is sometimes called an “and-or tree.”

As a typographical convention in this document, the names of non-primitive tasks will always start with
an uppercase letter, e.g., A or LearnStep, and the names of primitive tasks will start with a lowercase letter,
e.g., d or addStep.
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1 [A by r1]

2 do(human,A) “Let’s do A.”
3 [B by r2]

4 d(agent)
5 e(agent)
6 done(agent,B) “We’re done doing B.”
7 [C by r4]

8 h(human)
9 [i(agent)]

10 do(human,i(agent)) “Please do i.”
11 i(agent)
12 done(human,C) “We’re done doing C.”
13 done(human,A) “We’re done doing A.”

A"

C"B"

d! e! f! g!

h! i!
r2!

r1!

r3!

r4!

Figure 5: Segmented interaction history for one possible collaborative execution of example HTN.

3.2 Collaborative Dialogue
Since collaboration requires communication in some form (verbal and/or nonverbal), collaborative interac-
tions are also dialogues. In this document we will therefore use the terms dialogue and interaction inter-
changeably to refer to interactions that, like Figure 5, include both actions and utterances.

The indented lines on the left of Figure 5 serve as an introduction to the notation, called a segmented
interaction history, that Disco uses to record the structure of a collaborative dialogue. With a few small
changes (such as bold fonts) to improve readability, all of the text shown in Figure 5 and similar figures in
this proposal, including the utterance glosses in quotes, is automatically generated by Disco as the interaction
proceeds.

In this interaction, all the recipes in the HTN in Figure 5 (r1, r2, r3 and r4) are assumed to already
be known to both participants, i.e., the agent implemented in Disco and a human. This interaction thus
illustrates the do component of learn-do-teach.

Notice first that a segmented interaction history is hierarchical (shown by indentation) and that each level
of the hierarchy, called a segment, is introduced by a line in square brackets (e.g., lines 1, 3, 7, and 9) that
indicates the purpose (goal) of the following segment. Thus the purpose of the toplevel segment is to achieve
task A, with two subsegments to achieve B and C, and so on. In addition, for segments whose purpose is to
achieve a non-primitive task, the recipe chosen is also identified (e.g., “by r1”). The fundamental insight of
SharedPlans dialogue theory, which we see in this example, is that in task-oriented dialogues, the interaction
structure reflects the underlying task structure.1 Each line in the interaction history other than the bracketed
purpose lines corresponds to an event in the interaction, which is the occurrence of either a primitive action
from the fringe of the HTN, such as d(agent) on line 4, or an utterance, such as do(human,A) (“Let’s do A”)
on line 2. Primitive actions and utterances are shown in the history as operators, where the first parameter
indicates who performed the primitive (e.g., the agent or human) and additional parameters depending on
the type of task. This simple operator notation could be further formalized in a logic of action [37], but that
is not focus of this work.

The only two utterances used in this example, ‘do’ and ‘done’, are generic and thus do not appear in
application-specific recipes, such as the HTN in Figure 5. As we will see in further examples, both the
human and the agent can generate these utterances.

Furthermore, both of these utterances are meta (higher-order) operators, because they take an operator
as a parameter. The utterance do(human,A), said by the human on line 2 and glossed as “Let’s do A,” signals

1This does not mean that the interaction structure is always identical to the task structure. It is possible for the focus of attention
to shift around in the task (see [32]).
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the start of a new segment whose purpose is to achieve A. The utterance done(human,A) on line 13, which
is glossed as “We’re done doing A,” signals the end of that segment. When ‘do’ is used with primitive tasks,
the performer of the target task must also be specified,2 as in do(human,i(agent)) on line 10, where the
human tells the agent to “Please do i,” which the agent subsequently does on line 11. The ‘done’ utterance
is optional and is often omitted for segments whose purpose is a primitive task.

The human’s utterances and actions in this interaction were selected by the human from a menu. A
slightly different collaboration would have resulted if the human made different choices. For example, in
line 10 the human could have chosen to perform i herself rather than asking the agent to do it.

All of the agent’s utterances and actions were automatically generated by the Disco agent, using its HTN
planning and execution algorithm [45]. This algorithm keeps track of which step of the current HTN needs
to be done next, when a recipe choice needs to be made, and so on. Disco also includes turn-taking rules
and processes for deciding who should perform a particular primitive action.

4 Proposed Research: Supervised Interactive HTN Learning
To limit the size of this effort to the resources available, we have made a number of scoping decisions. First,
since our theoretical goal fundamentally concerns teaching and learning by humans, we are focusing on
supervised and interactive learning. In contrast with most current machine learning research, which focuses
on exploiting large (or huge) amounts of data, we restrict ourselves to approaches that are realistic for human
interaction, i.e., involving one or a few demonstrations of a single task and/or dozens of instructions, but not
hundreds or thousands.

Second, we decided to start with a unified theory of learning, doing and teaching task hierarchy (using
HTNs), rather than learning and teaching task primitives3 or non-deterministic plans. HTNs have been and
continue to be successfully applied in many practical applications, including with robots. Non-determinism
is problematic for human interaction, because it tends to dramatically increase the amount of data required
for teaching or learning. Furthermore, for complex tasks, the need for hierarchy does not go away when
non-determinism is added. Section 4.3.2 discusses a limited form of uncertainty that we do allow in task
pre- and postconditions and recipe choice conditions. Extending our work to fully non-deterministic plans
is a suitable topic for future research.

Finally, since our theory is focused on the semantic level of interaction, we will use various practical ap-
proaches, such as menus and specialized languages, to avoid the difficulties of unrestricted natural language
understanding and nonverbal communication.

4.1 Proof of Concept System
To make the idea of a unified theory more concrete and plausible, we have implemented a small proof
of concept system in Disco, which passes the Learn-Do-Teach Challenge for the simple HTN shown in
Figure 5. Following several example walkthroughs with this system below, we discuss our further research
plans and the Learn-Do-Teach Challenge competition.

4.1.1 Pedagogical Strategies as Meta-Recipes
The Disco agent in Figure 5 is capable of collaboratively doing application tasks, such as C, but in order to
also learn and teach such tasks, it needs to have pedagogical goals and strategies. An example of a peda-
gogical goal is teaching someone how to do C. Learning by demonstration and learning from instructions
are examples of pedagogical strategies.

We introduce pedagogical goals and strategies into our framework using reflection and theory of mind.
Reflection in computational systems in general is the process of reasoning about oneself, especially using

2In SharedPlans theory, all shared non-primitive goals are the joint responsibility of both collaborators, regardless of whether
all of the primitives in a recipe happen to be performed by only one collaborator.

3We have recently worked in another project on combining hierarchy learning with primitive task learning [39, 31].
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Figure 6: Pedagogical tasks and strategies.

the same representations and algorithms at both the object and meta (reflective) levels.
To start the reflection process, we first introduce a new generic non-primitive task, LearnRecipe, to

express the goal of a pedagogical interaction. In general, the desired result of LearnRecipe is for the learner
to have a mental representation at least sufficient to perform the recipe being taught. For example, if a
human is teaching an agent how to do C by r4, the goal of the interaction is LearnRecipe(C,r4,agent).
LearnRecipe is a meta-task, because it takes a task as a parameter.

The postcondition (success condition) of this example of LearnRecipe is knows(agent,C,r4), i.e., that
the agent has a mental model equivalent to recipe r4 for C. The collection of such knowledge (knows)
beliefs on the part of the teacher is a kind of theory of mind. Theory of mind in cognitive systems in general
refers to the attribution of mental states to the participants in an interaction. The student model [21] in
intelligent tutoring systems (see Section 2.2) is a special case of theory of mind. The student model in our
proof of concept system is rudimentary—it only keeps track of which recipe steps the student knows (see
Section 4.3.4).

We also need to introduce generic primitive tasks that modify mental states. In our proof of concept
system, we have only one such primitive, namely addStep(?learner,?task,?recipe), which adds the
specified task as the next step in the specified recipe. The addStep meta-primitive is used both for updating
the student model when an agent is the teacher and updating its own mental state when it is the learner.

Pedagogical strategies can now be expressed as recipes for decomposing pedagogical goals. In our proof
of concept, there is only one toplevel pedagogical strategy, which is to teach the steps of a recipe in order.
This strategy is expressed by the steps recipe shown at the top of Figure 6, which has a variable number of
steps of type LearnStep, corresponding to the number of steps in the recipe being taught. We call steps a
meta-recipe, because it decomposes a meta-task (LearnRecipe).4

Notice that there are three alternative meta-recipes for LearnStep: instruction, demonstration and top-
down, which express the pedagogical strategies of learning from instructions, learning by demonstration,
and topdown learning, respectively. Each of these recipes decomposes to instances of addStep. We will
see examples of using each of these pedagogical strategies and explain them further in the walkthroughs
below. Figure 6 also introduces two additional and important general features of HTNs: constraints and
applicability conditions.

Constraints are equalities that an HTN enforces/requires between the parameters of constituent tasks. In
the notation used here, these equalities are indicated by the appearance of the same variable, e.g., ?task, in
several places in the same recipe.

Optional boolean applicability conditions specify when alternative recipes may be used. For example,
the instruction recipe has no applicability condition, which means it may always be used to decompose
LearnStep. However, the demonstration recipe may only be used when the task parameter of LearnStep is
primitive; the topdown recipe may only be used when the task parameter is non-primitive.

4This combination of reflection and theory of mind is closely related to meta-planning [60]; but meta-planning has not been
applied before to building a learning and teaching agent.
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1 [LearnRecipe(C,r4,agent) by steps]

2 do(human,LearnRecipe(C,r4,agent)) “Let’s learn how to do C.”
3 [LearnStep(h,r4,agent) by instruction]

4 do(human,addStep(agent,h,r4)) “First step is h.”
5 addStep(agent,h,r4)
6 [LearnStep(i,r4,agent) by instruction]

7 do(human,addStep(agent,i,r4)) “Next step is i.”
8 addStep(agent,i,r4)
9 done(human,LearnRecipe(C,r4,agent)) “We’re done learning how to do C.”

(a) Human teaching agent by instruction how to do C.

10 [C by r4]

11 do(human,C) “Let’s do C.”
12 h(agent)
13 i(agent)
14 done(agent,C) “We’re done doing C.”

(b) Agent doing C.

15 [LearnRecipe(C,r4,agent’) by steps]

16 do(agent,LearnRecipe(C,r4,agent’)) “Let’s learn how to do C.”
17 [LearnStep(h,r4,agent’) by demonstration]

18 h(agent)
19 addStep(agent’,h,r4)
20 [LearnStep(i,r4,agent’) by demonstration]

21 i(agent)
22 addStep(agent’,i,r4)
23 done(agent,LearnRecipe(C,r4,agent’)) “We’re done learning how to do C.”

(c) Agent teaching another copy of itself by demonstration how to do C.

24 [LearnRecipe(C,r4,human’) by steps]

25 do(agent,LearnRecipe(C,r4,human’)) “Let’s learn how to do C.”
26 [LearnStep(h,r4,human’) by demonstration]

27 h(agent)
28 addStep(human’,h,r4)
29 [LearnStep(i,r4,human’) by instruction]

30 do(agent,addStep(human’,i,r4)) “Next step is i.”
31 addStep(human’,i,r4)
32 done(agent,LearnRecipe(C,r4,human’)) “We’re done learning how to do C.”

(d) Agent teaching another human by mixture of demonstration and instructions how to do C.

Figure 7: Implemented proof of concept system illustrating Learn-Do-Teach Challenge and mixture of
learning from demonstration and instructions.
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More than one recipe for a task may be applicable in a given situation. For example, if the learned task is
primitive, both the instruction and demonstration recipes are applicable. This is a choice that the teacher is
free to make and may be informed by application-specific and/or generic heuristics. For example, a generic
heuristic might be to always use the demonstration strategy the first time a given primitive is taught, and
then to use the instruction strategy thereafter.

Specifically, in our system, because the pedagogical strategies are represented the same way as application-
specific recipes, all of the computational mechanisms of collaboration are uniformly applied at both the
object (application-specific) and meta (generic pedagogical) levels, making it possible to seamlessly shift
between learning, doing and teaching. In Section 4.3.5, we discuss applying reflection one more time to
learn pedagogical strategies within the same unified theory.

4.1.2 Learning from Demonstration and Instructions
Figure 7 shows four implemented walkthroughs with our proof of concept agent in which it performs, for
task C, everything required by the Learn-Do-Teach Challenge. In order to focus on the learning semantics,
we have somewhat simplified these interactions5 by omitting grounding [13] behaviors (such as saying
“Ok”) and negotiation (such as accepting or rejecting a proposed goal), which are implemented in Disco
and which we plan to use in our proposed research.

Figure 7(a) illustrates the use of the instruction strategy by the human to teach the agent how to do C.
The instruction meta-recipe for LearnStep in Figure 6 expresses (in a simple way in this proof of concept)
this pedagogical strategy of “telling” someone how to do something. The interaction begins on line 2, where
the human introduces the LearnRecipe goal in exactly the same way that the A goal was introduced on line
2 in Figure 5. Notice on line 5 that the agent, following the instruction meta-recipe, performs an addStep,
which appropriately updates its mental model of r4.

In Figure 7(b), after being asked by the human, the agent shows that it has learned how to do C by
correctly performing all the steps in recipe r4.

In Figure 7(c) and (d), the agent is teaching C using the same meta-recipes it used to learn C. In Fig-
ure 7(c) it is teaching C to a fresh copy of itself (agent’), thus illustrating concretely that we are using the
same theory for learning and teaching. In Figure 7(d) it is teaching C to a human. In both cases, the agent is
making no assumptions about whether it is teaching an agent or a human.

Figure 7(c) illustrates the use of the demonstration strategy by the agent to teach C. The demonstration
meta-recipe for LearnStep in Figure 6 expresses a simple, optimistic version of learning from demonstration,
wherein after a primitive step is performed, the learner adds the step to its mental model of the current recipe,
i.e., learning it the first time.

Figure 7(d) illustrates how the pedagogical meta-recipes allow the intermixing of demonstration and
instruction strategies in teaching a single application-specific recipe. In this interaction, the original agent
teaches another human (human’) how to do C, choosing demonstration for the first step and instruction for
the second step of r4. Notice on lines 28 and 31 that the agent updates its student model by performing the
appropriate addStep’s with the bindings specified by the demonstration meta-recipe.

4.1.3 Topdown Teaching
Figure 8 shows how, after the agent already knows how to do C, the human teaches it how to do A. This
interaction illustrates the topdown strategy. The topdown meta-recipe for LearnStep in Figure 6 expresses
the idea of starting with the topmost task in a hierarchy and incrementally decomposing it—versus starting
with primitives and combining them into bigger and bigger non-primitives, as was done in Figure 7(a).
Notice that the topdown meta-recipe has a mutually recursive invocation of LearnRecipe, which allows the
topdown strategy to be intermixed with other strategies at different levels in the recipe tree.

5The complete log files are available at http://github.com/charlesrich/Disco/tree/master/examples/learn-do-teach/test
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1 [LearnRecipe(A,r1,agent) by steps]

2 do(human,LearnRecipe(A,r1,agent)) “Let’s learn how to do A.”
3 [LearnStep(B,r1,agent) by topdown]

4 [LearnRecipe(B,r2,agent) by steps]

5 do(human,LearnRecipe(B,r2,agent)) “Let’s learn how to do B.”
6 [LearnStep(d,r2,agent) by demonstration]

7 d(human)
8 addStep(agent,d,r2)
9 [LearnStep(e,r2,agent) by demonstration]

10 e(human)
11 addStep(agent,e,r2)
12 done(human,LearnRecipe(B,r2,agent)) “We’re done learning how to do B.”
13 addStep(agent,B,r1)
14 [LearnStep(C,r1,agent) by instruction]

15 do(human,addStep(agent,C,r1)) “Next step is C.”
16 addStep(agent,C,r1)
17 done(human,LearnRecipe(A,r1,agent)) “We’re done learning how to do A.”

Figure 8: Human teaching agent topdown how to do A.

Due to space constraints, the last interaction required to finish learning the entire HTN in Figure 5 is
omitted here. In that interaction, the human similarly teaches the second (alternative) recipe for B, namely
recipe r3.

4.2 Architecture of the Unified Theory
We now step back and look at the conceptual

DDomain!Model!
primi+ve!tasks::d,"e,"f,"g,"h,"i"

TTask!Model!
non0primi+ve!tasks::A,"B,"C"

recipes::r1,"r2,"r3,"r4"

DPedagogical!Model!
non0primi+ve!meta0tasks::LearnRecipe,"LearnStep"

primi+ve!meta0tasks::addStep"
meta0recipes::steps,"demonstraKon,"instrucKon"

Collabora+ve!Dialogue!Model!
meta0u<erances::do,"done"

generic!

applica+on0!
specific!

meta!

meta!

Figure 9: Layers of unified theory with examples from
proof of concept system.

architecture of our unified theory, which is com-
prised of the four layers shown in Figure 9.
The bottom two layers are application-specific,
while the top two layers are generic. Dotted
arrows in the figure indicate the use of reflec-
tion. Each layer in the figure shows examples
from our proof of concept system. Our further
research described below will populate the top
two generic layers with additional pedagogical
strategies and associated meta-utterances.

The bottommost layer in the architecture is
the domain model, which specifies fundamen-
tal decisions about how to represent the pos-
sible states of the application world. We have
adopted here a simple and commonly used ap-
proach, in which the domain model consists of a set of predicates that describe the state of the world and
operators that change that state. In our proof of concept, the operators are the primitive tasks: d, e, f, g, h and
i. We did not define any domain predicates in our proof of concept, but in general, domain predicates are
needed to express preconditions and postconditions of tasks. It is also possible to have application-specific
utterances. Other researchers have worked on learning domain models [19, 61, 63].

The second layer in the architecture, called the task model, contains the procedural knowledge that
enables a human or agent to perform and communicate about complex application tasks. As discussed
above, we have chosen HTNs as a common and convenient representation of this knowledge. Thus our task
model contains the definitions of non-primitive application tasks and the recipes for decomposing them, as
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for example shown in Figure 5. The procedural knowledge part of the agent’s theory of mind (the student
model for teaching) is also represented in terms of this task model.

The pedagogical model is the heart of our approach. The simple pedagogical model in our proof of
concept is shown in Figure 6. Refining and expanding this pedagogical model is one of the major activities
of our proposed research. As discussed above, we use reflection to express generic pedagogical strategies as
meta-recipes in the same HTN representation as the application task model. Using the same representation
and processes at both the object and meta levels is what makes it possible for our theory to unify learning,
doing and teaching. The agent also uses the meta-recipe representation for the student model when teaching
pedagogical strategies (Section 4.3.5).

Finally, the collaborative dialogue model contains generic meta-utterances, such as ‘do’ and ‘done’ in
our proof of concept system, that are used mediate the collaborative learning, doing and teaching processes,
as we saw in the preceding walkthroughs. Notice that these meta-utterances can be applied to either peda-
gogical or application-specific tasks, i.e., to tasks in the pedagogical model, task model or domain model in
Figure 9. Disco contains a number of additional such meta-utterances, for example to repeat or stop working
on a specified task [49], which we expect to take advantage of in our further research.

Reflection and theory of mind have been used in cognitive architectures before–so what’s novel and
innovative here? What’s new and important here is a theory that unifies learning, doing and teaching.
Reflection and theory of mind are powerful and well-known conceptual tools we are using to implement the
theory in a computationally concise and effective form.

4.3 Extending the Proof of Concept
In the remainder of this section, we describe how we will build on our proof of concept system.

4.3.1 Learning and Teaching Other Core HTN Features
The only representational features of HTNs that our proof of concept agent can learn or teach are those
shown in the simple task model of Figure 5: (total) ordering of recipe steps and alternative recipes. Repre-
senting real-world tasks requires many additional HTN features, including (see ANSI/CEA-2018 standard
[44]): task inputs and outputs, task preconditions and postconditions, partially ordered recipe steps, recipe
applicability conditions, and recipe constraints. Since our proof of concept agent is implemented in Disco,
it is already capable of using all of these features in the context of collaboratively doing tasks. Below,
we sketch preliminary ideas and directions for how to support learning and teaching each of these features
within a unified theory.

In our proof of concept, the application-specific tasks (A, B, C, d, etc.) did not have parameters (other
than to specify who performed primitive tasks), so there was no teaching or learning of task inputs or
outputs. The essential challenge for teaching and learning the inputs and outputs of tasks is to generalize
appropriately from the particular objects used in a concrete execution. This problem has been well-studied
in the programming by example [34] field. We plan to develop pedagogical strategies based on this work,
with the option of introducing new meta-utterances to help the teaching/learning process.

Task preconditions and postconditions are important for both execution and planning. For example,
preconditions (when they are false) prevent you from trying to execute a task in a situation in which it will
not work correctly. Postconditions (when they are false) tell you that a just-executed task has failed. We
will build on the work of other researchers on learning and teaching preconditions and postconditions using
natural language [10] and observation [2, 42].

The conventional machine learning approach to unordered or partially ordered recipe steps is for the
teacher to demonstrate all (or most) possible orders, so that the learner can generalize appropriately. How-
ever, this approach often puts an unreasonable and unnatural burden on the teacher. For example, it doesn’t
matter in what order you unscrew the five lug nuts holding a car tire. To teach this, instead of demonstrat-
ing all 120 possible orders, a better collaborative pedagogical strategy might be to demonstrate one step,
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i.e., unscrew one nut, and then to ask the learner to take off the other four nuts. This strategy implicitly
suggests that the order doesn’t matter. Furthermore, in the spirit of mixed-initiative (see Section 4.3.3) and
active learning [8], a learning agent could ask the teacher a question to confirm that the steps are unordered.
Also, see [40] for our related work on learning partial ordering based on a better understanding of frames of
reference.

Recipe applicability conditions express how to choose between alternative recipes for the same task,
such as r2 and r3 in Figure 5. We will build on other work on learning applicability conditions [63] and
conditional plans [55] to developing pedagogical strategies for learning and teaching recipe applicability
conditions.

The most common form of recipe constraint in HTNs is data flow, which is formally equality between
the inputs and outputs of steps. For example, going back to our lug nuts, after each nut is unscrewed it is then
put down. Formally, the input of the putdown action is constrained to be equal to the output of the unscrew
action. Based on our recent learning-from-demonstration research, [40] we believe that once the inputs and
outputs of tasks have been been correctly learned, the data flow follows quite easily. The main difficulty
with learning such constraints is coincidences, i.e., when two objects are equal in a particular execution, but
they don’t need to be in general. One obvious pedagogical strategy to address this problem is to intentionally
choose demonstration objects that avoid such coincidences.

This object-selection strategy does not seem to fit nicely into the meta-recipe formalism we introduced
in our proof of concept system. In general, we expect to make extensions to our meta-level represention
when we find that it does not have enough expressive power. These extensions will, however, maintain the
consistency of representation and process between learning, doing and teaching.

4.3.2 Uncertainty in HTNs
A natural place to model uncertainty in HTNs is in the evaluation of task pre- and postconditions and recipe
applicability conditions. Disco already implements a simple three-valued logic (true/false/unknown) for all
HTN conditions, which avoids the explosion of data required for a full probabilistic representation. Disco
also already has some simple strategies for executing HTNs with unknown conditions. We will explore
strategies for teaching and learning HTNs with unknown conditions. Many of these strategies will involve
new meta-utterances for telling and asking information.

For example, suppose a learner is unsure whether a task is executable in the current situation (unknown
precondition). Two alternative strategies are to attempt the task anyways or to ask the teacher. Which
strategy to try first depends on the cost of a failed attempt. Similarly, if a learner doesn’t know whether a
just-performed task has succeeded (unknown postcondition), the decision of whether to try executing the
task again before asking the teacher depends on the cost (both in effort and effect) of duplicate executions.

From a teacher’s point of view, suppose there is no good way to predict the best recipe for a particular
non-primitive task (unknown applicability conditions). Instead of simply demonstrating a guessed recipe, a
better strategy is to also tell the learner that there is no good rule for this decision.

We will also investigate approaches to adding more probabilistic information to HTNs without becoming
impractical for human interaction.

4.3.3 Learner Initiative
Collaboration is a mixed-initiative interaction. For example, in Figure 5, the agent has taken the initiative
(spoken or acted first) to achieve B in the first subsegment (lines 3–6), whereas the human has taken the
initiative to achieve C in the second subsegment (lines 7–12). The discussion of pedagogical strategies
above emphasizes the teacher’s initiative. However, there are many reasons why a learner may want to
temporarily take control of the interaction. For example, the learner may want to ask a specific clarifying
question [9], report that she is confused on a particular point, etc. The teacher needs to have strategies
(meta-recipes) for responding to such situations.
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4.3.4 More General Pedagogical Strategies
The pedagogical strategies discussed thus far are closely tied to the structural features of HTNs. We also
plan to explore the formalization of more general strategies (applied to HTNs), such as those used by human
teachers (see Section 2.5). For example, with the addition of appropriate new pedagogical meta-tasks and
meta-utterances, we should be able to express scaffolding (building up skills in a logically necessary order)
and fading (incrementally withdrawing teacher assistance) as meta-recipes. The criteria for choosing a
particular strategy in a particular situation are expressed in the applicability conditions of the corresponding
meta-recipes. For example, the criteria for when to start fading (i.e., withdrawing teacher assistance) are
expressed in the applicability condition of the fading recipe.

Other general pedagogical strategies center around learner errors and confusions. For example, a val-
idation strategy would specify how much should be taught before the teacher asks the learner to perform
the task in order to confirm correct learning (as Figure 7(a) and (b)). And if the validation fails, correction
strategies would specify remedial teaching behaviors, with alternative recipes depending on the nature of
the learner’s error. For example, if the learner omitted a step in the validation, then that step needs to be
retaught.

These more general pedagogical strategies will also require enriching the student model beyond what
was used in the proof of concept. For example, the student model will need to keep track of the questions
asked by the student, which tasks the student has tried on her own and whether she succeeded or failed at
them. Formalizing these more general pedagogical strategies will also contribute to the broader impact of
this research (see Section 6).

To support more general pedagogical strategies and other useful functions, such explanation and trace-
ability, we also plan to add generic meta-knowledge to our theoretical framework. For example, it would be
useful if an agent could answer questions regarding from whom it learned a particular piece of knowledge,
to whom it taught it, which recipes and meta-recipes were used, etc. Practically speaking, this information
is readily available in Disco.

4.3.5 Learning and Teaching Pedagogical Strategies
In our proof of concept system, all of the pedagogical strategies were manually coded as meta-recipes. In
the final year of our project, we plan to explore the feasibility of applying reflection one more time and
using our unified theoretical framework to learn and teach the meta-recipes—in other words, “teaching the
teacher.”

One way of approaching this problem would be to stay within the two-participant collaboration setting
and suppose that a student agent learns the teacher’s pedagogical meta-recipes at the same time as it learns
the application-specific task model being taught. However, this seems too difficult and does not align with
how human teachers are taught, i.e., teaching skills usually come after mastery of the knowledge being
taught. Therefore, an alternative approach we will investigate is a three-party collaboration with a teacher,
a student, and an observer, where the observer is trying to learn the pedagogical strategies demonstrated by
the teacher. Although Disco has been used almost exclusively for two-party collaborations, we have built
prototype three-party collaboration systems [26] in Disco.

4.4 The Learn-Do-Teach Challenge
Figure 1 is a pictorial representation of the Learn-Do-Teach Challenge. The basic idea is that an agent must
(a) learn a new task from a human, (b) do the task, and then teach it to (c) another copy of itself and (d)
another human. (These letters correspond with the examples in Figure 7.) Steps (e) and (f) are related
to scoring the competition, as discussed below. This challenge will serve two purposes: It will provide a
rigorous evaluation of our own agent and it is a key component of our broader impact.

We start by focusing on how to run the challenge as a competition for other researchers. Since the
ultimate goal is to motivate other agent researchers, such as those mentioned in Section 2, to unify learning,
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doing and teaching in their architectures, the competition must be fair, objective and hopefully engaging.
We also need to worry about accidental or intentional cheating. For practical reasons, the competition will
be limited to autonomous software agents and be automated as much as possible.

We will develop a set of target HTNs formalized in ANSI/CEA-2018 [44]. One likely domain is house-
hold tasks in a simulated world. Some of these HTNs will be provided to competition participants in advance
for practice; others will be reserved for the competition rounds. For each agent in the competition, the goal
of a round is to successfully learn, do and teach the given task model. As the competition rounds progress,
either at one meeting or over successive meetings, the target task models will become increasingly complex.

We will provide a simple teaching language to be used by all agents on arrows (a), (c) and (d) in Figure 1.
In our proof of concept, this language consisted of the utterances ‘do’ and ‘done’ and the primitive domain
tasks. We expect to add additional utterance types based on our own research and in negotiation with
potential competition participants. Our goal will be to make it easy for participants to translate their own
teaching language into this shared language.

Each researcher (playing the role of the human teacher in Figure 1) is then free to compose a sequence
of inputs (a) to teach the target task to their agent. After processing these inputs, the agent must then
(b) perform the target task in a simulated world. We will provide an automatic program that scores the
correctness of this and the other task performances on arrows (e) and (f). Next, the agent must generate a
sequence of outputs (in the shared teaching language), which are given to both (c) another—fresh—copy of
the same agent and (d) an unbiased human volunteer.

Finally, both the (e) agent copy and the (f) human volunteer will perform the target task in a simulated
world with their performance scored by the same automatic program used in (b) above. We will combine
the scores from (b), (e) and (f) into a final score to judge the winner of the competition. Of course, there
will undoubtedly many other competition details to be debugged once we start working on it.

Notice that a competitor desiring to cheat could simply pass teaching inputs (a) without change to (c)
and (d), which would likely result in a good score on (f) and avoid needing to implement teaching strategies
at all. To prevent this cheating, we will require that output (c)-(d) is sufficiently different from input (a), as
tested by an automatic comparison program. We will evaluate possible comparison algorithms with pilot
experiments.

We plan to submit an application to the 2020 AAAI Spring Symposium (usually in Stanford, CA) for
a workshop at which to host the first Learn-Do-Teach Challenge competition, accompanied by technical
presentations and discussions by the participants. Such a workshop could also fit with the AAAI, IJCAI,
Intelligent Virtual Agents (IVA), Human-Robot Interaction (HRI) or Autonomous Agents and Multi-Agent
Systems (AAMAS) conferences.

To use the Learn-Do-Teach Challenge for evaluating our own agent, the process is the same as described
above, except that instead of being a competition, we will run it as a controlled user study. Study participants
will fill all the human roles in Figure 1 and we will run and score different versions of our algorithms to gain
insights into the underlying theory.

5 Research Plan and Timeline
Figure 10 summarizes our proposed three-year timeline involving per year one and a third full-time graduate
students (with undergraduate assistance), one faculty month of each PI, and three days of consultation by
Dr. Person (see Section 2.5).

The focus of the first two years is to build upon our proof of concept system by expanding both the types
of procedural knowledge and the pedagogical strategies supported. The focus of our third year will be on the
development and hosting of the Learn-Do-Teach Challenge, as described in Section 4.4, which will serve
both as an evaluation of our technical work and as a vehicle for broader impact on the scientific subfields
we seek to influence. We will also explore learning and teaching pedagogical strategies, as discussed in
Section 4.3.5.
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To make our work more concrete and pave
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Figure 10: Research timeline.

the path toward future practical applications, we
have tentatively chosen three application areas
in which we will pursue this research. The first
two applications leverage prior domain model-
ing efforts: car maintenance (see Section 4.3.5)
and the operational procedures for a gas turbine
engine (see Section 2.2). The third application
area, household tasks such as cooking and clean-
ing, will likely serve best for the Learn-Do-Teach
Challenge, because of its familiarity. All of these
tasks will be in simulation with a software agent.

6 Broader Impacts of the Proposed Work
Autonomous agents and robots that interact with humans in diverse environments are the next step in the
evolution of automation technology. Although such agents and robots will have some basic capabilities
builtin, their task repertoire will also need to be extended “in the field” via collaboration with humans or
other agents. Basic research to make this possible will give the U.S. a competitive advantage in the new
industries arising from this technology.

By developing computational models of human peda-

learn!
:(a):

teach!
:(d):

agent"

student"

agent’"
teach!
:(c):

do!!!(b)!:

student’"

Figure 11: Human-centered learn-do-teach.

gogical theories, this project can also contribute to improv-
ing human pedagogy. For example, if you reverse the first
human and agent in Figure 1 you obtain Figure 11, in which
a human student learns from a computer agent, and then
teaches what she has learned to another computer agent or
another student. It is well known [6] that having students
teach other students enhances learning. Our research will al-
low experiments to determine the potential benefit of having
students teach computer agents. More generally, our soft-
ware agent implementation will make it possible to explore the performance of different pedagogical strate-
gies in different situations much more exhaustively than purely human studies, resulting in knowledge that
can be applied by human teachers with human students.

As a faculty member associated with the Learning Sciences and Technology Program at WPI, co-PI
Rich will be able to transfer this knowledge into WPI’s Assistments project,6 which currently serves over
600 teachers and their students from 43 states, including many students in underrepresented minorities.

A substantial part of the research described here will directly contribute to the training of graduate and
undergraduate engineering students, including women. Of the three graduate students most recently super-
vised by the investigators, two are women. We will continue to actively recruit women and underrepresented
minorities for this project.

Finally, in addition to disseminating the results of this project through scientific publication and open-
source software, we will raise the visibility and interest within the broader research community in a unified
theory of hierarchical tasks via a novel and engaging research competition, called the Learn-Do-Teach Chal-
lenge.

6http://assistments.org
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