
ES FORUM BACKGROUND PAPER FOR GROUP 2

An Ontological Perspective on Interactive Task Learning

Charles Rich
Worcester Polytechnic Institute

1 Introduction

What does it mean to “know how to do” something?

This is a question about the ontology of task knowledge, i.e., the abstract form, nature and organi-
zation of this knowledge. Answering this question is a logical prerequisite to questions about how
to learn or teach such knowledge. Although our ultimate goal is identify the frontiers of the current
state of the art, we will organize this paper around the main ideas and trends in current and past
work on task knowledge. We are not, however, undertaking a comprehensive literature review; we
will cite only representative examples in each topic area. Open questions, unsolved problems and
controversies will be broken out in italics, as with the opening question above.

Another underlying premise of this presentation is that learning and teaching are best viewed as
kinds of collaboration, i.e., the teacher and learner are two participants in a collaborative interaction
in which the shared goal is increase the learner’s abilities. Furthermore, learning and teaching are
often naturally interleaved with other kinds of collaboration, such as delegation and supervision.

Finally, because discussions of ontology have a tendency to become very abstract, we will at-
tempt whenever possible to illustrate ideas using a shared task example, which we describe in the
next section.

1.1 An Example Task: Tire Rotation
Rotating the tires on a car is a task commonly performed in an automotive service center (see left
of Figure 1). It entails unscrewing the four or five lug nuts on each wheel, removing the wheels and
then remounting them on different hubs, according to a rotation pattern, such as back-to-front or
cross-over (left rear goes to right front, etc.). The overall task involves many individual steps, with
repeated subsequences (such as screwing or unscrewing all the nuts on a particular hub), alternatives
(the rotation patterns), and the use of a tool (lug wrench or power wrench). Mohseni et al. have
recently taught a PR2 robot (see right of Figure 1) a greatly simplified laboratory version of this
task using a combination of demonstration and instructions.

Figure 1: Human tire rotation and state-of-the-art robot example.

1

Draft version without citations.



1.2 Levels and Types of Knowledge
To start, it is useful to think about the knowledge involved

Meta-Knowledge

Procedural Knowledge

Domain Knowledge

Figure 2: Levels of knowledge.

in interactive task learning as stratified into the three levels
shown in Figure 2. The discussion in the body of this paper
will be organized according to this breakdown.

The bottommost level, domain knowledge, is the gen-
eral knowledge about the world (or parts of the world) that
pervades all aspects of the tasks being learned. This knowl-
edge can sometimes be assumed to be already shared be-
tween the teacher and student, but it may also need to be
explicitly taught. For example, any physical manipulation task, such as tire rotation, requires a
commonsense understanding of everyday physics, such as the fact that an object will fall if you let
go of it. Domain knowledge is used in both of the levels above it.

The middle level, procedural knowledge, comprises most of what is usually focussed on when
teaching tasks, such as the ordering of steps, preconditions, task hierarchy, and so on. For example,
the first step in removing a wheel is to unscrew the lug nuts.

The topmost level, meta-knowledge, is knowledge about the procedural knowledge.1 For exam-
ple, knowing how long it typically takes to rotate the tires on a car is meta-knowledge about the tire
rotation procedure.

Finally, in addition to these three knowledge levels, an independent categorization to keep in
mind is symbolic versus non-symbolic2 knowledge. For example, the cross-over tire rotation pattern
is an example of symbolic procedural knowledge, whereas the motion trajectory for unscrewing a
lug nut is an example of non-symbolic knowledge. An example of non-symbolic domain knowledge
would be the maximum weight carrying of a robot. Symbolic and non-symbolic knowledge can also
be intermixed, such as in a parameterized motion trajectory with semantic constraints.

2 Domain Knowledge
Domain knowledge is the foundation of all task learning, other than the most limited form of
mimicry. The type and extent of the required domain knowledge varies, of course, with the task (or
more typically, collection of related tasks) that are being learned. For physical tasks in the everyday
world (such as tire rotation or household tasks), the domain knowledge starts with commonsense
physics, which includes knowledge of:

• Gravity - how objects support other objects, fall, etc.

• Motion - how objects move in free space and slide, roll, or bounce in contact with other
objects

• Materials - how solid objects bend or break in response to squeezing or stretching or other
manipulations; how liquids flow, pool and fill containers

• Causality - how actions on one object result in changes to other objects via connections be-
tween them

1Formally speaking, meta-knowledge could also include knowledge about domain knowledge, but persuasive exam-
ples do not come to mind.

2One might alternatively characterize the distinction as discrete versus continuous.

2



Can commonsense physics be built into robots, and if so, will that make it easier to teach them
physical tasks?

As one moves into more specialized tasks, the domain knowledge also becomes more spe-
cialized. For example, the domain knowledge underlying cooking includes specialized knowledge
about state changes associated with specific temperatures (such as boiling, freezing, and burning).
In addition to commonsense physics, tire rotation requires some specialized knowledge about the
appropriate forces for screwing and unscrewing lug nuts. A lot of such domain knowledge is non-
symbolic.

Not all tasks are physical. Consider, for example, teaching arithmetic or teaching a virtual agent
how to perform online tasks on your behalf. In these cases, the domain knowledge is more abstract
and mathematical, such as the application program interfaces (API’s) for online services.

Formal logic is a useful way thinking about symbolic knowledge, even if it is not the form in
which the knowledge will actually be used in practice. From this point of view, domain knowledge
provides the primitive object types (and perhaps some designated object instances), predicates, and
functions, which are used for specifying the procedural and meta-knowledge, as discussed below.

What is the appropriate use of formal logic in research on interactive task learning?

3 Procedural Knowledge
Procedural knowledge is the knowledge required to execute tasks (which does not include being
able to teach, learn or reason about them). This knowledge has been studied most intensively in
the artificial intelligence subfield of planning. The following are the key elements of procedural
knowledge:

• primitive actions
• ordering
• conditionals
• parameters

• constraints
• hierarchy
• motion trajectories

3.1 Primitive Actions
The most basic element of procedural knowledge is the primitive actions. It is important to note
that the notion of “primitive” is contextual—what is primitive in one situation may not be primitive
in another. For example, in teaching a robot how to rotate tires, unscrewing a lug nut and putting
it down may be a primitive action, whereas for a different robot/teacher, there are two separate
primitives actions: unscrewing and putting down.

Primitives are essentially symbols. However, primitive does not mean predefined or builtin. A
particular primitive may be directly associated with a precompiled motor (or cognitive) program,
but it also may be necessary to learn how to execute the primitive, in which case the primitive is
ultimately a mixture of symbolic and non-symbolic knowledge.

How can/does the notion of primitive actions apply to “continuous” activities such as ballroom
dancing or dribbling a basketball?

3



3.2 Ordering
The next most basic element of procedural knowledge is ordering. The most minimal form of plan
is thus a sequence of primitives. Ordering knowledge also commonly takes the form of a partial
order. For example, in tire rotation, the order in which you unscrew the lug nuts does not matter,
but all the unscrew actions must precede unhanging the wheel.

What are the natural kinds of parallel and overlapping execution models appropriate for interactive
task learning?

3.3 Conditionals
In order to achieve a formally complete computational system, all that needs to be added to primi-
tives and ordering is conditionals. Conditionals can take many forms and can be used in different
ways, but basically they are all about changing which actions are executed depending on the state
of the world.

The most common form of conditional is a simple if-then-else, which specifies two alternative
primitives (or sequences of primitives), depending on the value of some boolean condition. For
example, in tire rotation, you can use either a lug wrench or power tool to tighten the nuts, depending
on whether the power tool is available.

Also commonly used are preconditions, which when false, block the execution of a specified
primitive or sequence. This is particularly useful when actions are partially ordered, because there
may be something else that can be done while waiting for the precondition become true. For exam-
ple, after squirting oil on a rusty nut, the unscrew action on that nut is blocked until 5 minutes have
passed; meanwhile, other nuts can be unscrewed.

A less commonly used form of conditional is a maintenance condition, which is a condition that
is expected to hold throughout the execution of a long-running action; if the condition ever becomes
false, the action is supposed to be terminated. For example, the pneumatic power supply is expected
to be maintained to the power lug nut tool throughout execution of the screw or unscrew action.

Conditions need not make only binary choices. For example, imagine a sorting task in which
the color of the object is supposed to match the color of the sorting bin, where there are more than
two colors.

Conditionals are a key place where domain knowledge is used in procedural knowledge, because
the domain knowledge specifies the relevant and perceivable properties of the world that are tested
in the conditions. For example, it is domain knowledge that specifies that the position of the wheels
on the hubs is relevant to the tire rotation task, and not the color of the tires. To frame this in formal
logic terms, the domain knowledge specifies the predicates that are used in the conditions.

What are the natural kinds of uncertain and probabilistic conditional models appropriate for inter-
active task learning?

3.4 Parameters
Using only what has been discussed above yields a very limited form of procedural knowledge,
because the actions can only be applied to specific objects in specific settings—think of programs
without inputs. To achieve generality and reusability, most procedural knowledge also includes
parameters. For example, the procedural knowledge of how to rotate the tires on a car can be
applied to any car. Thus the car (and implicitly all of its parts, such as the hubs, wheels, etc.) is

4



an input parameter of the task. Input parameters also often have restrictions on what values can be
provided. These are very much like preconditions. For example, the input to the tire rotation task
must be a four-wheeled vehicle.

In addition to input parameters, it is also common for proce-
Unscrew 

PutDown 

Figure 3: Example data flow
constraint.

dural knowledge to include output parameters. Generally speaking
the outputs of a task are considered to be the objects whose proper-
ties are changed or that are created during the execution of the task.
For example, the output of the unscrew action is the nut, because
its location has changed.

How can procedural knowledge be parameterized automatically?

3.5 Constraints
Knowledge of parameters is important, because it enables the specification of constraints between
the input and output values of different actions.

The simplest form of constraint is equality. For example, if you are painting a matching set of
chairs, the color input parameters of all the paint actions would be constrained to be the same.

An equality constraint between an output parameter of an action and an input parameter of a
subsequent action3 is called data flow, as shown in Figure 3. The arrow in this example specifies
that the output of the unscrew action (the nut) becomes the input to the putdown action. Data flow is
an aspect of the causal structure of a procedure. Causal structure is important knowledge for, among
other things, recovering from errors.

How is causal structure used in interactive task learning?

Constraints other than equality can also be part of procedural knowledge. For example, in a
robotics procedure, for stability, the weight of an object placed on top of another object may be
constrained to be less than the weight of the first object.

3.6 Hierarchy
Hierarchy is important because humans deal with complex tasks by breaking them down into sub-
tasks. For example, Figure 4 shows one way to break down tire rotation into five levels of hierarchy.
The tree notation in this figure is called a hierarchical task network (HTN), which has been widely
used in artificial intelligence. The fringe of the tree specifies the sequence4 of 64 primitive actions
required to rotate the tires on a car (some repeated structure is elided in the figure to save space).
Notice that there are multiple instances of the same type of primitive, e.g., Unscrew, with different
parameters, i.e., different nuts.

The non-primitive nodes in the tree are called abstract tasks. The toplevel abstract task in
this example is RotateTires. Other abstract tasks at intermediate levels of the hierarchy include
UnscrewHub (unscrewing all the lug nuts on one wheel) and UnhangHub (removing the wheel from
the car and putting it down). Although knowing these abstract tasks is not fundamentally necessary
in order to execute tire rotation, it is important for two reasons: reuse and communication.

Regarding reuse, not only are there multiple occurrences of the same type of primitive in this
task hierarchy, there are also multiple instances of the same type of abstract task. For example,

3It is logically possible, but unusual, to constrain two output parameters to be the same.
4Technically, in this case not a sequence, but a partial order, since some actions, such as unscrewing lug nuts on a

single wheel, are unordered

5



. . . 

. . . 

. . . 

Rotate
(LFhub,Tire3,LRhub,Tire1, ...)

RotateTires

ScrewHubs
(LFhub,LRhub, …)

UnscrewHub
(?hub)

UnscrewStud
(?stud)

UnscrewStud
(?stud)

Unscrew
(?stud;?nut)

PutDown
(?nut)

UnhangHub
(?hub;?tire)

Unhang
(?hub;?tire)

PutDown
(?tire)

HangTire
(Tire3,LFhub)

HangTire
(Tire1,LRhub)

PickUp
(?tire)

Hang
(?tire,?hub)

ScrewHub
(?hub)

ScrewHub
(?hub)

ScrewStud
(?stud)

ScrewStud
(?stud)

PickUp
(?nut)

Screw
(?stud,?nut)

. . . 

UnhangHubs
(LFhub, ...;Tire1,Tire3, ...)

. . . 

. . . 

. . . 

. . . 
. . . 

. . . 

frontRear xPattern

Recipe

Abstract Task

Primitive Task
UnscrewHubs

(LFhub,LRhub, ...)

UnscrewHub
(?hub)

. . . 

. . . 

UnhangHub
(?hub;?tire)

. . . 

Ordering	
  Constraint

Figure 4: Example of hierarchical procedural knowledge for tire rotation.

UnscrewHub, UnhangTire, HangTire, and ScrewHub each appear four times (once for each wheel
on the car). Furthermore, it is common for the same abstract tasks to be reused in other toplevel
tasks in the same domain. For example, these four abstract tasks are also steps in changing a flat
tire.

Abstract tasks also provide a richer communication vocabulary than just the primitives for col-
laborative interactions, including teaching and delegation. For example, if there is a breakdown,
rather than saying “Pickup nut step 49 failed,” one can say “Pickup nut failed while unscrewing the
first wheel.” Similarly, one can delegate an entire abstract task, rather than specifying the sequence
of primitives, e.g., “now, please unhang all the tires.”

Conditionality in hierarchical task networks is usually conceptualized in terms of decomposi-
tion choices, called recipes. For example, notice that Figure 4 is a tree with two kinds of nodes.
The primitive and abstract tasks discussed above are rendered as rectangles. Each abstract task is
decomposed into subtasks, each of which may be abstract or primitive. The oval recipe nodes in the
tree indicate alternative decompositions.5 For example, in Figure 4 there are two alternative recipes
for the Rotate task: frontRear and xPattern, corresponding to the two standard patterns for rotating
tires on a car: front wheels to rear wheels on the same side, or left-front to right-rear, etc. (The
figure does not show the constraints that specify the details of these two patterns.)

The condition that determines whether a particular recipe can be chosen is called an applicability
condition. Like the other conditions discussed in Section 3.3, applicability conditions test the state
of the world and are built on domain knowledge. At execution time, if the applicability condition of
more than one recipe for a given abstract task is true, then the procedural knowledge allows any of
the applicable recipes to be chosen.

What is the best way of teaching recipe applicability conditions?

Like abstract tasks, recipes also serve an important communication function. For example, it is
efficient to simply say,“Let’s use the x pattern.”

5Such trees are also called and-or trees, where the abstract tasks are and nodes, because all of their children are
executed, and the recipes are or nodes, because only one of their children is chosen.

6



Finally, a cautionary note: the hierarchy in Figure 4 is not the only way to break tire rotation
down into subtasks. For example, some people might insert an extra abstract task (say, Remove-
Hubs) grouping together UnscrewHubs and UnhangHubs. Someone else might not group Unscrew
and PutDown into UnscrewStud. Even the choice of primitives cannot be assumed to be universal.
For some people, Pickup and Screw may be a single primitive, rather than a sequence of two prim-
itives. This adds a lot of challenges to communication and collaboration, beyond even the problem
of different people using different words for the same task concept (see Section 4).

3.7 The Policy View
In reinforcement learning, which is increasing being applied to robotics, procedural knowledge is
viewed somewhat differently than above. Instead of embedding the predicates that check the state
of the world in conditional structures on sequences of actions, a single policy function, π, is used
that maps from (all possible) states of the world, S, to the possible actions, A:

π : S → A

The policy view and the conditional plans view are mathematically equivalent in the sense that
each can be mechanically translated into the other. However, they are very different in terms of the
affordances they provide for human interaction. The policy view offers only a single monolithic
function, π, to discuss, teach, correct, etc., whereas the conditional plans view exposes much more
structure for interaction.

There has also been work on learning parameterized policies and hierarchical policies.

Can reinforcement learning algorithms be applied directly to conditional plans?

3.8 Motion Trajectories
All of the kinds of procedural knowledge discussed above are essen-

Figure 5: Motion tra-
jectories for unhanging a
tire.

tially symbolic. However, there is clearly also a kinesthetic dimension
to “knowing how to do” a task. For example, as Figure 5 suggests,
there are only certain motion paths through space that work to unhang a
tire. Unlike the action sequences and hierarchies discussed above, this
knowledge is in the form of continuous functions. At its simplest, such
knowledge is a single motion path through 3D space, e.g., implementing
a primitive action such as Unhang. More complicated versions of such
knowledge may be in the form of regions in 3D space that constrain the
motion, or trajectories/regions in the higher-order joint-configuration
space of the manipulator. Sometimes it is also important to know the
appropriate forces to be exerted at various points in the trajectory, for
example, how much to tighten the lug nuts.

What is the relationship between symbolic and continuous procedural
knowledge and how can they be learned together?

4 Meta-Knowledge
Meta-knowledge is knowledge about other knowledge. In this section, we review some key cate-
gories of knowledge about procedural knowledge that are important for learning/teaching and col-
laboration generally:

7



• capabilities/tools required
• postconditions
• failure recovery
• duration

• difficulty
• uncertainty
• pedagogical knowledge

The preceding discussion of procedural knowledge assumes the agent performing the task is
capable of executing all of the primitives. But this is not always true. In fact, a common motivation
for collaboration is that one particular agent alone does not have all of the necessary capabilities.
Knowledge of which primitives a particular agent is capable of performing (or restrictions on the
parameters on the primitives) is thus an important category of meta-knowledge. For example, if a
human and a robot are collaborating on tire rotation, perhaps the robot is capable of performing all
of the screw/unscrew primitives, but anything involving the tire must be done by the human, because
the tire is too heavy for the robot to lift. The availability of a particular tool, such as a lug nut or
power wrench for tire rotation, is a closely related kind of capability meta-knowledge.

Should capabilities meta-knowledge include preferences (for different types of tasks)?

Actions do not always succeed. Knowing how to decide whether an action succeeded or failed
is a kind of meta-knowledge about the action. This is called the postcondition of the action.6 Both
primitives and—in the case of hierarchical tasks—abstract tasks can have postconditions. Like the
other conditions discussed in Section 3.3, postconditions test the state of the world and are built on
domain knowledge. For example, the postcondition of the Pickup primitive is that the input object is
in the agent’s hand/manipulator. This condition could fail, for example, if the agent has not properly
grasped the object before it moves its arm.

In what kinds of procedures is it most important to know postconditions?

Action failure introduces the issue of failure recovery. One of the differences between a novice
and an expert in a particular task is that the expert knows more about how to recover from specific
failures. For example, suppose Unscrew fails because the lug nut is frozen. An expert knows to
squirt some penetrating oil on the nut and let it sit for 5 minutes and then try again. Failure recovery
knowledge is obviously of great practical importance, and in some cases, can be much larger than
the basic knowledge of how to do the task when everything goes well.

What is the role of generalized failure recovery knowledge?

When planning for tasks in the future, especially in the context of teaching or delegation, it is
very useful to have estimates of the duration and difficulty of the tasks. For hierarchical tasks, one
might have independent estimates for abstract tasks, or derive them by combining estimates for the
primitives.

What is a natural metric with which to estimate task difficulty?

All of the types of meta-knowledge discussed above are subject to uncertainty. As a simple
example, estimated task duration may be plus or minus 10%. More significantly, even the success
of a task may be uncertain, for example, due to sensing difficulties. To return to the Pickup example

6Unlike preconditions, which are needed to control execution as discussed in Section 3.3, postconditions are not
strictly needed to execute a procedure if everything goes well. This is why we are categorizing postconditions as meta-
knowledge here.

8



discussed above, what if the robot’s hand does not incorporate a sensor to detect whether it is holding
something? In that case, in order to proceed intelligently with the task, it would be helpful to know
the a priori probability of Pickup succeeding. Or what if the sensor is unreliable? It would then be
helpful to know the probability it actually succeeded, based on the sensed information.

Is probability the best approach to expressing uncertainty for interactive task learning?

Finally, knowing how to do something is not the same knowing how to teach it. A good teacher
has extra pedagogical knowledge about a task, such as appropriate fading and scaffolding strategies,
the mistakes students typically make, and so on. Like error recovery knowledge, this pedagogical
knowledge can be larger than the basic knowledge of how to do the task.

How do teachers learn pedagogical knowledge?

5 Conclusion
The discussion above has focused on ontology to the exclusion of many other important issues
related to task knowledge. One of the most obvious such issues for interactive task learning is the use
of natural language. Although we observe above that in hierarchical tasks, the recipes and abstract
tasks (as well as the primitives) provide an important communication “vocabulary,” we mean the
concepts, not the particular words or phrases that are used. For example, we don’t expect anyone to
spontaneously say “UnhangHubs” as the second toplevel step of tire rotation. Understanding what
people actually say is a major research challenge. Similar natural language challenges apply for all
the types of knowledge discussed here.

Finally, we have as much as possible skirted the issue of knowledge representation in the discus-
sion above. You have to know what the knowledge is before you think about how to best represent
it for particular computational purposes.

9


