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Abstract— We present a novel algorithm to identify reusable
motion trajectories corresponding to the primitive actions in a
human demonstration of a symbolic plan with accompanying
narration. Our approach involves a multi-step process starting
with time-series pattern mining applied to raw motion-capture
data. We evaluated our algorithm on recordings of human
motions and showed that it identifies reusable trajectories with
86% of the accuracy of human experts.

I. INTRODUCTION

The assumption that we can preprogram robots with all
of the task plans and motor primitives necessary for their
function becomes impractical as the range of robotics appli-
cations grows. One widely proposed solution is to develop
repositories of reusable task plans. Typically, these plans
specify sequences of symbolic manipulation primitives such
as pickup, insert or unscrew. We are interested in the problem
of how such primitive actions can be effectively grounded for
use by a robot in a particular application domain.

It is unrealistic to assume in general that the motor
programs for primitive manipulation actions can be dis-
covered through random exploration of the environment,
because the search space is extremely large. Tenorth et al.
[1] have proposed a cloud repository containing hierarchical
task plans, which are decomposed at the lowest level into
primitives that are predefined on robots or have predefined
motor programs also in the repository. Unfortunately, this
approach requires either agreement in advance on a standard
representation scheme for manipulation primitives or, in
the case of downloadable motor programs, that the current
environment is very similar to the environment for which the
original motor program was written.

We propose an approach that makes no assumptions
regarding the robot’s environment or pre-existing motor
programs. Inspired by work on robot learning from demon-
stration, we propose a two-step solution. In the first step,
identification, the robot identifies the motion trajectories
corresponding to each primitive in a narrated human demon-
stration. However, because of the physical differences in the
body of the human versus the robot (the correspondence
problem [2]), the robot cannot directly execute these trajec-
tories. The second, learning, step is therefore for the robot
to use the identified trajectories to learn a motor program
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for each primitive. This approach is in the spirit of learning
from demonstration because it enables a robot to extend its
capabilities and adapt to novel situations without requiring
explicit programming by the user.

In this paper, we address the first of the two steps above,
identification. We assume that human users have limited
patience and therefore aim to identify primitives from a small
number of demonstrations. To facilitate this, we ask human
users to narrate their demonstrations by verbally providing
the label (selected from a predetermined set of labels) of
each action as it is being performed. In our experiments, we
track user motions using a Vicon motion capture system.

Our technical approach makes use of prior work in pattern
recognition research on the discovery of repeated patterns in
time series data. Specifically, we leverage the grammar-based
motif discovery algorithm from [3], an extended version of
which is available through the GrammarViz 2.0 open source
toolkit [4]. GrammarViz uses a grammar-based compression
algorithm to detect approximate, variable-length time series
motifs in one-dimensional temporal data. However, as we
discuss below, GrammarViz alone is unable to solve the iden-
tification problem due to the irregularities and noise present
in human motion data. Our work uses GrammarViz as a
foundation and adds a technique for effectively identifying
primitive action boundaries based on the narration timing and
time series alignments.

II. RELATED WORK

Related work on learning task plans from human users
includes learning from demonstration approaches using hier-
archical [5] or flat structure [6], and learning from instruction
[7]. Our work does not address how task plans are learned—
we take them as given, either from a repository or the
human’s own knowledge. There has been other work on
learning primitive motion trajectories using demonstration
and reinforcement learning methods [8]. Among these, the
most relevant are those that learn from a small number of
demonstrations such as Ijspeert et al. [9]. In the future, our
work can be integrated with task plan and trajectory learning
methods to build an end-to-end learning system.

Several other researchers, such as [10] and [11], have
explored time series segmentation using assumptions about
the motion primitives. However, our approach is unique in
leveraging the human’s semantic knowledge of the task, i.e.,
via narration, to help in the segmentation process.

Identifying approximately recurrent unknown patterns in
time series is known as the motif discovery problem in the
data mining field. A great deal of effort has been applied
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to solving this problem. A few of these systems [12], [13],
[14], [4] discover motifs of variable length which makes
them suitable for activity segmentation tasks. In this work,
we use GrammarViz [4] due to its ability to find variable-
length motifs and its simplicity. It does not require the motif
length to be known in advance, and it is both time- and space-
efficient. However, our work does not depend on any other
specific details of GrammarViz, which could be replaced by
other similar systems.

GrammarViz is comprised of two algorithms: a) Symbolic
Aggregate approXimation (SAX) [15], which discretizes the
input time series into a string, and b) Sequitur [16], which
induces a context-free grammar from the string. Each non-
terminal generated by the Sequitur algorithm identifies a
recurrent subsequence (motif). In this work, each motif
identifies the trajectories for a primitive action.

III. APPROACH

The contribution of this paper is a novel algorithm for iden-
tifying trajectories corresponding to the reusable primitive
actions in a narrated human demonstration of a complex
procedural task. The ultimate goal of our work is to send the
best example trajectory for each primitive action to a learning
algorithm, which will then abstract a motor program that the
robot can use. We have evaluated our approach in the context
of a tire rotation task, using a motion capture system to track
the position of a tire, two hubs (and associated studs), several
nuts, a table, and the human’s right hand.

We first attempted to use GrammarViz alone to identify
reusable primitives in recorded demonstrations without nar-
rations. This failed because, human trajectory data has a large
degree of variation (see Fig. 1), even for the same action ex-
ecuted by the same human; without context, different actions
as well as unrelated motion can be incorrectly labeled. This
caused GrammarViz to produce many false positives (for 9
users an average of 80% false positives), i.e., it identified
many more primitives (motifs) than were actually present.
The additional steps discussed in Section IV dramatically
reduced the number of false positives.

In addition, we use the narrations to notice when a given
primitive appears in different contexts, i.e., with different
preceding and following actions. Comparing demonstrations
of the same primitive in different contexts is fundamentally
what enables the algorithm to distinguish the boundaries
of each primitive. Furthermore, when different contexts are
not initially demonstrated, the robot can ask for specific
additional demonstrations from the human (see Section V).

The consistent parts of the demonstration of an action in
different contexts are identified as reusable; the inconsistent
parts are considered to be transition motions. We assume
that on-the-fly path planning will be used to generate the
transition motions between consecutive primitives in a plan
when the learned motor programs are reused. Trimming the
transition motions from the identified trajectories is important
because it increases reusability of the primitive in different
environments, especially containing different obstacles. For
example, suppose a user demonstrates Screw(stud) followed

Fig. 1: Raw hand motion data with respect to a specific
reference object labeled with narrations (distance from right
hand and stud shown here).

by PickUpNut(table) with a direct walking motion between
the location of the stud and the table. If the walking motion
is erroneously included as part of either action, one of these
primitives is not reusable in another environment where the
direct path between the location of the stud and the table is
obstructed. The goal of our algorithm is thus to correctly
identify each primitive action including all and only the
consistent parts of the primitive’s demonstrations.

The algorithm starts with human demonstrations. We ask
users to perform a task, following a plan consisting of
a sequence of primitive actions (none of which the robot
knows how to perform in advance). We also ask users to
concurrently (see Fig. 1 arrows) explain what they are doing,
e.g., Screw(stud), by naming the primitive action chosen
from a predetermined set of action names, and the reference
object, chosen from a predetermined set of objects. The
target object, defined as the moving object, is automatically
inferred from the motion data. We have found that narration
requires minimal additional effort for users. However, the
moment at which the name of the primitive is uttered
may occur at an unpredictable time during the primitive’s
demonstration. Therefore the narration can only be used as a
rough estimate of the beginning and the end of the primitive.

Since GrammarViz processes only one-dimensional data,
we cannot give it the full 3D trajectory of the manipulator
(human’s right hand) and the manipulated objects. Instead,
we use the distance of the manipulator from the reference
object as our single dimension. This feature assures that each
primitive action is executed relative to its reference object,
and that other objects’ spatial relation to the manipulator
become irrelevant. This simple choice of feature also avoids
the need for hand-tailoring of features. Although this feature
cannot be used to model all possible actions, it has the
ability to represent many common goal-driven actions, such
as pick up, open, close, turn on, etc. In future work, we
will explore how our approach can be combined with more
general feature representation and selection methods.

IV. ALGORITHM

Fig. 2 shows the input and output of each step of our
algorithm for the identification of one primitive action. The
algorithm begins with the raw, continuous trajectory data and
the user’s narrations (Fig. 1) and proceeds through the steps



Fig. 2: Overview of algorithm, illustrated with identifying trajectory for Screw primitive.

(labeled with letters) described below. The final output of the
algorithm is a human trajectory for each primitive action in
the plan.

A. Enclosing Segment Extraction

The first step of our algorithm is to leverage narration to
approximately divide the data into primitive action segments,
disregarding the irrelevant data of other primitives. For each
primitive label, we find all the instances of that primitive and
for each instance, we extract the motion data for that instance
between the preceding and the following narrations (S1 and
S2 in Fig. 1). This represents a highly conservative estimate
of the action timing; in later steps we apply GrammarViz to
identify repeated patterns within these bounds. Before apply-
ing GrammarViz, we concatenate the motion data for each
identified action using a constant value “spacer”, resulting
in a signal that shows the execution of the same action in
multiple instances. The resulting data, shown in the second
box in Fig. 2, is then used as input to GrammarViz.

B. Time Series Pattern Mining

Given the above data, the next step of the algorithm is to
use GrammarViz to detect recurrent patterns corresponding
to each action. GrammarViz’s SAX algorithm converts the
continuous data into symbolic form, which is then provided
to the Sequitur algorithm. Two parameters, alphabet size and
PAA size, are used to control the granularity (discretization)
of the symbolic form. We run GrammarViz over a range of
possible alphabet and PAA size parameter values. The range
of values of these two parameters are the only tuning required
of our overall algorithm, and affect mostly the efficiency.
We then select the parameter values with highest utility, as
calculated by the heuristics described in the next section.

Each run of GrammarViz generates a set of motifs, or
recurrent patterns, which represent instances of a primitive
action. The third box in Fig. 2 shows a motif, shaded in red,
that has been identified in three instances of the execution
of the Screw action. The unshaded parts of the signal are
either part of the preceding and following actions, or the
transition motions. The fourth box in Fig. 2 shows another
example motif. As can be seen here, some instances of the
action (the instance marked with an X) may not match a

given motif. This occurs when the human’s execution of a
particular action is very dissimilar to its other executions.

C. Local Motif Selection

The preceding step results in many candidate motifs cor-
responding to various repeated data patterns identified by
GrammarViz. Our next step is to select the motif that most
accurately captures the repeated action pattern. We start
the motif selection process by eliminating some clearly
inaccurate motifs that either 1) include part of the artificially
added spacer, or 2) contain more shaded segments than there
are actions (e.g., the third box in Fig. 1 should have no more
than three shaded segments, as there are only three action
instances). We explored two heuristics to rank and select
among the remaining valid motifs:

• Length heuristic: The utility of each instance of a
primitive is equal to its length. The intuition is that the
longer motifs account for more of the data.

• Density heuristic: This utility is based on the density of
motifs. Each motif generated by GrammarViz covers a
region of the data (represented by a shaded segment); a
density histogram is generated by counting the number
of covered regions for each data point across all valid
motifs. For each instance of a primitive action, the area
under the density function in the instance’s interval is
the utility of that instance. The two parameters used
by SAX (see above) affect the computed similarity of
the underlying subsequences. We therefore build the
density histogram by counting the motifs generated by
the full range of SAX parameter values. A motif with
higher density therefore has more consistency among
its occurrences.

For each of these heuristics, we compute the cumulative
utility of a motif by averaging the utility of all the instances
of a primitive in that motif. We then sort the motifs based
on their cumulative utility.

D. Global Motif Selection

In addition to the above local heuristics for motif selection,
we also apply a global motif selection rule based on the
assumption that the user executes only one action at a time,
so each primitive’s time interval cannot overlap with any



Fig. 3: Filmstrip for Screw corresponding to the first shaded segment in Fig. 4.

other. In the previous steps, each primitive action was ana-
lyzed independently of the other primitives (local view); the
results are thus independent of the length of the input and the
variations in the human demonstrations. However, the results
do not guarantee that the primitives’ motifs do not overlap
with each other. We utilize breadth-first search to explore
the space of permutations of the motifs that satisfy the
non-overlapping constraint. A set of motifs that satisfy the
primitives’ time constraints is a valid permutation. Finally,
among all valid permutations, we select the permutation with
the highest cumulative utility across all primitive actions.

E. Trajectory Selection
Having identified the best motif for each action primitive,
our next step is to select which specific execution instances
of that action should be sent to the robot. If the robot’s
primitive learning algorithm is able to learn from multiple
demonstrations, then all instances identified can be used. In
this section, we discuss the case in which a single best action
instance must be selected for robot learning or execution.

The key method by which GrammarViz is able to identify
variable length motifs is through SAX’s discretization of the
continuous motion data. However, this discretization removes
a lot of information that exists in the full continuous motion
data. Thus, in selecting the best action instance we go back
to the continuous motion trajectory signal.

As an example trajectory selection problem, consider the
Screw instance shown in Fig. 3, in which the human reaches
for the stud, then slides/twists the nut on the stud. The twist
motion causes the nut to slightly come off the stud (frame
3), so the user returns his hand to the nut and fixes it back
into the correct position (frame 4) before fully retracting
his hand (frame 5). A more compact execution of Screw
would include no correction, only reaching for the stud,
sliding/twisting the nut on the stud, and retracting the hand.
Fig. 4 shows the trajectory data and motif for three instances
of Screw, where the first shaded segment corresponds to
the filmstrip in Fig. 3, and the remaining shaded segments
are from other, more compact, execution examples. Our
algorithm is able to identify all three instances as the same
action. However, we argue that among these possible action
instances, the most commonly used motion is assumed to be
most preferable. In this example, the most common execution
(S2 and S4) is also shorter, which has the added benefit of
avoiding unnecessary motion.

In order to find the most representative (frequently used)
instance, we look for an instance with minimum distance

Fig. 4: This motif includes three instances of Screw. The
S2 segment instance is selected as the best instance for
the primitive learning algorithm based on the DTW score.
(Reduction in size of blank spacer shown by dotted lines.)

from all other instances. We measure the distance between
each two instances using Dynamic Time Warping (DTW).
All instances are then sorted based on their average distance
from other instances, and we select the instance with the
minimum average distance from other instances (e.g., shaded
part of S2 in Fig. 4). If a motif includes only two instances
of a primitive, the shorter instance will be sent to the robot’s
action primitive learning and execution module.

V. SUPPLEMENTAL DEMONSTRATION QUERIES

As explained in Section III, our algorithm relies on having
different following and preceding contexts for each primitive
action in order to correctly identify the boundaries of each
action. If this is not the case, e.g., if actions X,Y and Z
always occur in the same order, no distinguishing character-
istics exist to accurately determine the action boundaries—as
can be seen in the data in Fig. 1, fluid human manipulation
actions have no explicit breaks.

A particular task plan may not always include different
contexts for each primitive. We address this through sup-
plemental demonstration queries [17], which are a kind of
active learning. The robot may use two approaches to form
a supplemental demonstration query. First, it may search
through an existing library of task plans to find a plan that
provides different contexts for any unresolved primitives,
and request a demonstration of that plan. Second, the robot
may construct a novel new plan containing the unresolved
primitives in a different contexts.

VI. EVALUATION

For our evaluation we recorded 9 users executing 2 different
plans, consisting of 22 actions, using a Vicon motion capture
system. The users were given written instructions for the
two plans, along with an explanation of the plans’ primitive



Primitive # of viable
identifications Error Mean Error SD

Hang 8/9 0.04 0.03
Unhang 7/9 0.15 0.08
Unscrew 6/9 0.13 0.16

Screw 6/9 0.06 0.05
PickUpNut 9/9 0.11 0.06

PutDownNut 8/9 0.12 0.04
PickUpTire 9/9 0.16 0.11

PutDownTire 9/9 0.14 0.09
All 62/72 (86%) 0.12 0.09

TABLE I: The results of applying the complete algorithm
using the density heuristic on the data for 9 users.

actions - Unscrew (US), Screw (S), Unhang (UH), Hang (H),
PickUpTire (PUT), PickUpNut (PUN), PutDownTire (PDT),
and PutDownNut (PDN), and the objects involved in the
actions. The first plan1 involved mounting a tire on a hub
with a single nut, unmounting and remounting the tire on
another hub, and then unmounting the tire from that hub.
A table was provided on which to put down the nut. The
second plan2 involved mounting and unmounting a tire from
a hub, but with the second hub used as a storage location
for the nut instead of the table.

We select these two plans since they provide different
contexts for the identification of four primitives: Unscrew,
Screw, Unhang and Hang. These plans do not provide dif-
ferent contexts for the other four primitives: PickUpNut, Put-
DownNut, PickUpTire and PutDownTire. At the end of the
demonstrations of the two plans, the supplemental demon-
stration query procedure was used to request demonstrations
for PickUpNut followed by PutDownNut (PUN,PDN), and
PickUpTire followed by PutDownTire (PUT,PDT).

In a typical human-robot interaction, we expect users to
be familiar with the plans they are using; however, none of
our users were familiar with either the tire rotation plans or
the environment. As a result, we asked users to execute each
plan multiple times until they were able to execute the plans
naturally and fluidly. Only the data from their last trial is
used for the evaluation.

We evaluated our approach by executing our algorithm
for each of the 9 users independently, utilizing each user’s
demonstration of the two assigned plans as well as supple-
mental demonstration queries. We report aggregated results
across all 9 users in three evaluations:

1) Accuracy of Results: For the first evaluation, we had
two experts (the first and second authors) examine videos of
each of the final motion segments selected by our algorithm
and decide whether each represented a viable example of the
given primitive. Both experts evaluated the best action prim-
itive instance selected by our algorithm (using the density
heuristic) for each type of action for each of the 9 users.
An instance was deemed not viable if the video contained
more than one primitive or if the motion of the person in the
video did not accomplish the primitive. The second column

1Plan’s actions: PUT,H,PUN,S,US,PDN,UH,H,PUN,S,US,PDN,UH,PDT
2Plan’s actions: PUT,H,US,S,US,S,UH,PDT

of Table I presents a summary of these results: compared
to experts, the algorithm achieved an average identification
accuracy of 86% across all users.

As can be seen, actions that require large motions, such
as PickUpTire and PutDownTire, resulted in better identi-
fication performance, with the algorithm able to correctly
segment the actions of all 9 users. Actions requiring smaller
motions, such as Screw and Unscrew, were more challenging,
resulting in 66% accuracy across users. One of the reasons
smaller actions are more challenging is that small variability
in their execution can have a greater impact on the overall
trajectory. For example, our data contains Screw and Un-
screw actions both for an empty stud and for a stud with a
mounted tire. The resulting difference in stud length leads
to variability in a single user’s demonstrations of the same
action, making it difficult for the algorithm to accurately
determine action boundaries. In future work we will consider
additional techniques for increasing the percentage of viable
identifications for small-scale actions.

2) Characterization of Error: In the second stage of our
evaluation, we had our two experts review the complete plan
sequence videos for all 9 users and code the start and end
times for each primitive; the Cronbach’s alpha for the two
experts was 0.94. We then compared the expert coded times
with the boundaries of the motif selected by our algorithm.
We calculated the error between our algorithm output and
expert coding by measuring the overlap between the selected
time segments, an example of the calculation is shown below:

We considered all start or end times between the two
experts’ opinions to be correct, i.e., the error is 0 if the
start (end) of the motif segment selected by the algorithm
falls in the interval between the action start (end) times
selected by the experts. If the start (end) time is outside the
experts’ interval, then the error is calculated as the difference
between the timestamp of the algorithm and the nearest
correct timestamp (as evaluated by the experts) normalized
by the length of the segment. Note that for this analysis we
exclude any motion segments that were previously identified
as not viable.

Columns 3 and 4 of Table I present the mean [0-1] and
standard deviation [0-1] of the error for each of the analyzed
actions. The mean error across all primitives and users is 0.12
with standard deviation of 0.09; note that in this case there
is little variance in the error across different actions.

3) Comparing Algorithm Variants: Finally, we compared
the performance of four variants of our algorithm with
respect to number of viable actions identified (letters refer



Fig. 5: Percentage of viable identifications for each primitive
using different variants of the algorithm.

Steps Heuristic # of viable
identifications Error Mean Error SD

A,B,C Length 132/234 (56%) 0.15 0.1
A,B,C,D Length 139/234 (59%) 0.16 0.11
A,B,C,D Density 193/234 (82%) 0.11 0.08

A,B,C,D,E Density 62/72 (86%) 0.12 0.09

TABLE II: The mean and standard deviation of the error, and
the number of viable identifications for different variants of
the algorithm.

to Fig. 2): 1) steps ABC with the length heuristic, 2) steps
ABCD with the length heuristic, 3) steps ABCD with the
density heuristic, and 4) steps ABCDE with the density
heuristic. The improvement resulting from each step of the
algorithm is shown in Table II and the radar chart in Fig. 5.
Comparison between (1) and (2) shows that adding step D
alone has no consistent impact on algorithm performance.
Comparison between (2) and (3) shows that the density
heuristic significantly increases the percentage of viable
identifications over the length heuristic. The density heuristic
measures the similarity of the instances in a motif, giving
a better heuristic for measuring the consistency among the
instances of an action than the length heuristic. Finally,
comparison between (3) and (4) shows that adding the DTW
analysis in step E increases the percentage of viable iden-
tifications across most actions. Overall, the ABCDE-density
variant of the algorithm outperforms the other techniques.

VII. CONCLUSION

In this paper, we contributed a novel approach for identi-
fying reusable motion trajectories from a small number of
demonstrations. We explained how we leverage narrations in
addition to the human demonstrations to help in the identifi-
cation process. We evaluated our algorithm on recordings of
real human demonstrations and reported that our algorithm
identified 86% percent of the primitive action trajectories the
same as human experts.

The output of our algorithm can be used in combination
with primitive learning algorithms to enable a robot to
execute the actions demonstrated by the user. One such
algorithm is Task Space Region (TSR) [18] learning, which
learns the constraints of an action from the motion trajectory.

Learning such constraints enables the TSR algorithm to
generalize tasks and reuse them in different situations (e.g.,
with reference and target objects in different locations). In
the future, we would also like to integrate our work with
task definition learning (specifically, HTN learning).

In future work, we will address other issues that will
arise from using this algorithm in a natural human-robot
interaction, such as: misidentified or unidentified reference
objects or action labels in narrations, allowing user-specified
instead of predetermined primitives, generalization for tasks
with multiple target and reference objects, and mistakes in
user demonstrations.
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