
Interactive Hierarchical Task Learning
from a Single Demonstration

Anahita Mohseni-Kabir, Charles Rich, Sonia Chernova, Candace L. Sidner, Daniel Miller
Worcester Polytechnic Institute

Worcester, MA, USA
{amohsenikabir, rich, soniac, sidner, millerd}@wpi.edu

ABSTRACT
We have developed learning and interaction algorithms to
support a human teaching hierarchical task models to a
robot using a single demonstration in the context of a mixed-
initiative interaction with bi-directional communication. In
particular, we have identified and implemented two impor-
tant heuristics for suggesting task groupings based on the
physical structure of the manipulated artifact and on the
data flow between tasks. We have evaluated our algorithms
with users in a simulated environment and shown both that
the overall approach is usable and that the grouping sugges-
tions significantly improve the learning and interaction.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

Keywords
Hierarchical Task Networks; Learning From Demonstration

1. INTRODUCTION
This paper focuses on the problem of how a robot can effi-
ciently learn a hierarchical task model from a human teacher
who is an expert in the domain, but not in robot program-
ming. Our approach integrates learning from demonstra-
tion (LfD) with hierarchical task networks (HTNs). We use
HTNs instead of the flat representations more commonly
used in LfD because HTNs are more intuitive and computa-
tionally more tractable, especially for non-programmers and
complex tasks.

Additionally, our approach consists of viewing LfD as a
collaborative discourse (see Figure 1). In a collaborative dis-
course, both participants (in this case, the human teacher
and the robot learner) are committed to the shared goal
of the interaction (in this case, for the robot to learn a
new task) and both actively contribute towards achieving
that goal. More specifically, in the situated interaction illus-
trated in Figure 1, which is our target, both the human and
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Figure 1: LfD as a collaborative discourse.

the robot can manipulate and observe the other’s manipu-
lations of artifacts in the shared environment, and there is
bi-directional communication. Collaborative discourse the-
ory [5] provides a foundation for both the algorithms and
the implementation of our system. More specifically, the
rules in this theory for managing the focus of attention (as a
stack) have guided our interaction design and we are using
an open-source tool, called Disco [14], based on collaborative
discourse theory in our implementation.

Finally, in this paper we focus on learning from a single
demonstration. As we will see below, this is possible because
of the bi-directional communication between the teacher and
the learner. However, sometimes multiple demonstrations
are unavoidable. Our other work [10] explores how to merge
multiple demonstrations in HTNs.

The example domain we have chosen for this research
is maintenance tasks and specifically car maintenance, be-
cause it is challenging yet familiar to most readers. We have
started with tire rotation and expect in the future to teach
a robot how to check the oil, change filters and belts, and
so on.

This paper is organized a-

Figure 2: Simulated
environment with PR2.

round the running example of
a tire rotation HTN, which is
introduced in Section 2. In
Section 3, we first describe how
our algorithms can learn the
hierarchical structure of this
HTN from a single “ideal” in-
teractive demonstration. How-
ever, our user study indicates
that most users are far from
ideal, which motivates the need for suggestions from the
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Figure 3: A hand-coded hierarchical task network for tire rotation.

robot, which we then describe. Section 4 describes our user
study in detail. It shows both that the overall approach
is usable and that the robot’s suggestions significantly im-
prove the learning and interaction. We discuss related work
in Section 5, after we have presented our results.

The intended application of this work is with a real robot,
such as the PR2, in a shared physical environment. As a first
step, however, we have implemented and evaluated our tech-
niques using Gazebo in the simulated environment shown in
Figure 2. See Section 6 for a description of the physical
environment we are building and other next steps.

2. HIERARCHICAL TASK NETWORKS
HTNs are widely used in artificial intelligence, especially in
interactive systems. An HTN is essentially a tree in which
the fringe nodes denote primitive tasks, i.e., tasks that can
be directly executed (e.g., by a robot), and the other nodes
denote abstract tasks, which must be decomposed in order to
be executed. As an example, consider the HTN for tire rota-
tion shown in Figure 3. This is a hand-coded version of the
kind of HTN that our system learned from the participants
in our user study.

The abstract tasks in an HTN are not absolutely necessary
to execute the toplevel task—RotateTire could simply be
represented as a sequence of 64 primitives. However, there is
much evidence that humans naturally think about complex
tasks hierarchically. For example, collaborative discourse
theory is based on a hierarchy of goals.

The abstract tasks in an HTN provide an important vo-
cabulary for communication between the human and robot
in the context of a collaboration. This shared vocabulary
is needed for discussing the partial completion status of the
task, for delegating subtasks, for discussing potential prob-
lems with execution, and so on. Furthemore, the abstract
tasks can often be reused in other situations. For example,
after learning the HTN in Figure 3, the robot not only knows
how to rotate tires, but it has also learned two abstract tasks
(UnscrewHub and UnhangHub) that are useful for fixing a
flat tire.

HTNs are also commonly used as an alternative to sym-
bolic planning in complex real-world applications where a
complete logical formalization is difficult or infeasible. Al-
though tire rotation is simple enough that it could easily be
formalized for a symbolic planner, our target is applications
in which this is not true. The learning algorithms in this
paper therefore require only the name and input types of a
task.

There are many different formalisms available for repre-
senting HTNs. In this work, we use the ANSI/CEA-2018
standard [13] because, among other things, it explicitly rep-
resents data flow between tasks, which is the basis for one
of the grouping heuristics described in Section 3.2. In other
work [11] we have used data flow in HTNs to learn temporal
constraints from a single demonstration.

Since the HTN in Figure 3
car 
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Figure 4: Terminology.

will be used as a running ex-
ample (and was the domain
of our user study), it is worth-
while examining it here in
some detail. First, Figure
4 shows the terminology we
are using for the relevant parts
of a car: a tire goes on a hub and is secured with three nuts
(one on each stud). The hubs are identified as LF, LR, RF,
RR, standing for the left-front, left-rear, etc., and each hub
has three studs, identified as “LFhub.stud1”, etc. The tires
are named Tire1, Tire2, etc., and in the user study have
distinct colors for convenience of identification.

In ANSI/CEA-2018, both primitive and abstract tasks
have typed inputs and outputs. The tire rotation HTN uses
six primitive task types: Screw, Unscrew, Hang, Unhang,
PickUp, and PutDown, with their respective input and out-
put types shown. For example Unscrew (see Figure 5) takes
a stud as input and returns a nut as output. There are 64
primitive tasks in the fringe of the tire rotation tree (some
of the repetitive structure has been elided in the figure to
save space).

Figure 3 defines 11 abstract
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Figure 5: Data flow.

task types, such as UnscrewHubs,
which are used 45 times in the
interior of the tree. This par-
ticular way of decomposing the
tire rotation task is not the only
possible way, but the other rea-
sonable decompositions all have
a similar number of abstract types
and total number of nodes.

In ANSI/CEA-2018, the sub-
tasks of a given task are by de-
fault unordered. An explicit temporal constraint can be
added between two tasks to specify a partial ordering. For
example, the four toplevel steps of RotateTires are totally
ordered, but the steps of UnscrewHubs are unordered, since
it does not matter in what order you unscrew the nuts.



Figure 6: Graphical user interface for teacher.

Data flow in ANSI/CEA-2018 is an identity constraint
between a task’s output and an input of a sibling task, i.e.,
another subtask of the same parent task. Figure 5 shows an
example of data flow in the tire rotation HTN.

A key feature of HTN’s that we are not dealing with in
this work is the ability to specify alternate decompositions,
or recipes. Figure 3 provides two recipes for the Rotate
step of tire rotation corresponding to two different rotation
patterns: front-to-rear and corner-to-corner (“X-pattern”).
Learning alternative recipes is one of those circumstances
in which multiple demonstrations are unavoidable. In this
paper, however, we are only learning the front-to-rear recipe.

3. LEARNING FROM DEMONSTRATION
In this section we will explain, using two example interac-
tions, how our system learns the hierarchical structure of
the tire rotation HTN in Figure 3. The first example inter-
action, in Section 3.1, is a hypothetical “ideal” interaction
in which the robot provides no helpful suggestions, but the
user teaches exactly the hand-coded hierarchical structure
anyway. While this interaction is fully supported by our
system, in our user study, no participants came even close
to this ideal behavior when the robot provided no sugges-
tions; instead they made far less optimal task structures. In
the second interaction, described in Section 3.2, the same
HTN is learned with suggestions from the robot that guide
the user in structuring the task. This interaction is in fact
typical of what we saw with our users who received and ac-
cepted suggestions from the robot.

Our focus in this work is on learning the grouping struc-
ture of the HTN. The names chosen for abstract tasks and
some details of the inputs and outputs may vary from our

hand-coded HTN. Furthermore, our current system only
supports a bottom-up style of learning, in which primitives
are first combined into small abstract tasks, which are then
combined into bigger abstract tasks, and so on. This style
lends itself well to demonstration. In the future (see Sec-
tion 6), we plan to extend our techniques to top-down and
mixed modes of learning.

Figure 6 shows the graphical user interface we have de-
veloped for a human to use with our simulated robot en-
vironment. In use, the human teacher interacts with this
interface while simultaneously seeing the effects of actions
on a side-by-side simulation screen, similar to Figure 2. Fig-
ure 6 shows the state of the GUI at line 32 of Figure 7.

Before we describe its operation in detail, we also need to
emphasize that this GUI is not a research goal in its own
right, but rather a means to test our learning algorithms
and overall interaction design while still in simulation. As
we discuss in Section 6, most or all of this GUI will dis-
appear once we move into a physical shared human-robot
environment.

The left side of the GUI contains buttons that select a
primitive (top left) or abstract (bottom left) task to exe-
cute. The primitive task types are fixed. New abstract task
buttons are added whenever a new abstract task type is
learned.

The top middle area of the GUI is mainly for specifying
inputs, if any, as needed before executing a task. Each in-
put can be selected from a drop-down list of objects in the
environment of the correct type. When the user presses the
Execute button, the robot executes the selected primitive or
abstract task.

The Rename and Delete buttons at the top of this area
are for renaming and deleting learned abstract tasks. The
Holding line above these buttons is a small informational



display that keeps track of the object, if any, that the robot
is currently holding.

The middle area of the GUI below the input selection area
is the main informational display, which shows the current
hierarchical structure of the learned tasks. The small arrow
next to New Task A (red circle added here for visibility) in-
dicates the abstract task currently being learned. This area
is also where the highlighting appears for tasks suggested
for grouping, as described in Section 3.2. The Teach New
Task and Task Complete buttons below this area respec-
tively start and end the demonstration of a new abstract
task.

Finally, the right side of the GUI contains a“chat”window
in which the robot can ask the user questions and the user
can reply. For example, whenever the user presses the Task
Complete button, the robot prompts the user for a name
for the newly learned abstract task. This is also where the
robot’s helpful suggestions appear and where the user can
accept or reject them.

3.1 Learning Without Suggestions
Figure 7 shows a hypothetical interaction that results in the
system learning the hierarchical structure of Figure 3. The
user starts by teaching a new abstract task (which will be
named UnscrewStud), demonstrating its two primitive sub-
tasks: Unscrew (applied to stud1 of the LFhub) and Put-
Down (applied to the nut it is holding as a result).

Teach New Task
Execute Unscrew(LFhub.stud1)
Execute PutDown(nut11)

Task Complete: UnscrewStud
Teach New Task
Execute UnscrewStud(LFhub.stud2)
Execute UnscrewStud(LFhub.stud3)

Task Complete: UnscrewHub
Teach New Task
Execute UnscrewHub(LRhub)
Execute UnscrewHub(RFhub)
Execute UnscrewHub(RRhub)

Task Complete: UnscrewHubs
Teach New Task
Execute Unhang(LFhub)
Execute PutDown(Tire1)

Task Complete: UnhangHub
Teach New Task
Execute UnhangHub(LRhub)
Execute UnhangHub(RFhub)
Execute UnhangHub(RRhub)

Task Complete: UnhangHubs
Teach New Task
Execute PickUp(Tire3)
Execute Hang(Tire3,LFhub)

Task Complete: HangTire
Teach New Task
Execute HangTire(Tire1,LRhub)
Execute HangTire(Tire4,RFhub)
Execute HangTire(Tire2,RRhub)

Task Complete: Rotate
. . .
Teach New Task
Execute UnscrewHubs(LFhub,LRhub,RFhub,RRhub)
Execute UnhangHubs(LFhub,LRhub,RFhub,RRhub)
Execute Rotate(LFhub,Tire3,LRhub,Tire1, . . . )
Execute ScrewHubs(LFhub,LRhub,RFhub,RRhub)

Task Complete: RotateTires
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Figure 7: An hypothetical ideal interaction to teach
tire rotation without robot’s suggestions.

Then, in lines 5–8, the user applies this new abstract task
to the other two studs of the LFhub. Notice that when
the user completes this demonstration and names this new
higher-level abstract task UnscrewHub, the system includes
the immediately preceding demonstration of UnscrewHub in
the abstraction, so that UnscrewHub has three subtasks, one
for each stud.

Continuing in lines 9–13, the user similarly applies this
new abstract task to the other three hubs and names this
new yet higher-level abstract task UnscrewHubs (plural).
As before, the system includes the immediately preceding
demonstration in the abstraction, so that UnscrewHubs has
four subtasks, one for each tire. At this point all the nuts
are off the car.

Next, in lines 14–22, the user similarly teaches a high-level
abstract task, UnhangHubs, which takes off all the tires and
leaves them on the ground. The heart of tire rotation is then
in teaching the Rotate abstract task in lines 23–31, where
the user hangs the tires back on in the rotated pattern (Tire3
on LFhub, etc.).

To save space, 13 button presses (including 7 Execute but-
tons) are elided at line 32, culminating in the learning of
ScrewHubs. The learning process for ScrewHubs is entirely
parallel to the learning of UnscrewHubs in lines 1–13. Fi-
nally, in lines 33–38, the four highest-level abstract tasks are
put together to make RotateTires.

Teach New Task
Execute Unscrew(LFhub.stud1)
Execute PutDown(nut11)
Robot: “Do you want to group the highlighted steps
(Unscrew and PutDown) into a new subtask?”
“Yes”
Robot: “Should I execute Unscrew/PutDown on other studs
of left front hub?”
“Yes”
Robot: “Should I execute Unscrew/PutDown*3 on other
hubs of the car?”
“Yes”
Execute Unhang(LFhub)
Execute PutDown(Tire1)
Robot: “Do you want to group the highlighted steps
(Unhang and PutDown) into a new subtask?”
“Yes”
Robot: “Should I execute Unhang/PutDown on other hubs
of the car?”
“Yes”
Execute PickUp(Tire3)
Execute Hang(Tire3,LFhub)
Robot: “Do you want to group the highlighted steps (PickUp
and Hang) into a new subtask?”
“Yes”
Robot: “Do you want to group the highlighted steps
(Unhang/PutDown*4 and PickUp/Hang) into a new subtask?”
“No”
Execute PickUp/Hang(Tire1,LRhub)
Execute PickUp/Hang(Tire4,RFhub)
Execute PickUp/Hang(Tire2,RRhub)
Robot: “Do you want to group the highlighted steps (four
HangTire’s) into a new subtask?”
“Yes”
Robot: “Do you want to group the highlighted steps
(Unhang/PutDown*4 and HangTire*4) into a new subtask?”
“No”

. . .
Task Complete: RotateTires
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Figure 8: A typical interaction to teach tire rotation
with robot’s suggestions.



last← last task executed
if |inputs(last)| 6= 1 then return

input← first(inputs(last)); whole← parent(input)
parts← ∅
foreach other ∈ type(input)

if other 6= input ∧ parent(other) = whole
then add other to parts

if parts 6= ∅
then ask ‘Should I execute ’+last+‘ on other ’

+type+‘s of ’+whole+‘?’
(a) Parts heuristic

last← last task executed
previous← task executed immediately before last
foreach input of last

if source(input) = previous ∧ holding input after previous
then ask ‘Do you want to group the highlighted steps (’

+previous+‘ and’+last+‘) into a new subtask?’
return

(b) Data flow heuristic

Figure 9: Pseudocode for suggestion heuristics.

In summary, in this ideal interaction, the user provided 28
task execution instructions and the robot learned 11 new ab-
stract task types, including the toplevel RotateTires. (The
robot, of course, executed more than 28 actions because
some of the tasks instructed by the user were abstract.)

Unfortunately, as mentioned earlier, no users in our study
came even close to this ideal behavior. The best anyone
achieved was 6 new abstract task types. So, the question is,
how can we help users get closer to this ideal behavior? The
next section describes our approach, which is to use general
heuristics to generate helpful suggestions.

3.2 Heuristics for Generating Suggestions
Reflecting on the ideal interaction in Figure 7, we identified
two general heuristics to help the robot learn HTNs with
useful abstract tasks. Because these are heuristics, which
means that they are not always right, we communicate the
robot’s suggestions as questions to which the user can say
yes or no (to accept or reject the suggestion).

The first heuristic, called the parts heuristic, is inspired
by the grouping of repeated tasks in the ideal interaction,
which is driven by the part-whole structure of the domain,
as shown in Figure 10. The heuristic rule suggests repeating
the last executed task on the other parts of the same type
that share the same physical parent (e.g., the other two studs
of a hub). If this suggestion is accepted, the system then
groups the last task together with repetitions for the other
parts into a new abstract task.

The second heuristic, called the data flow heuristic, is in-
spired by the grouping that the ideal user does in lines 1–4
of Figure 7. The heuristic rule suggests grouping two con-
secutive tasks whenever an output of the first is an input of
the second (e.g., the data flow shown in Figure 5) and the
robot is holding the data flow object between the two tasks.

Figure 9 shows pseudocode for these two heuristics, which
are applied in order after the execution of each primitive or
abstract task. Notice also that both of these heuristics are
quite general. They may be more or less useful in different
domains, but they are expressed entirely in terms of mathe-
matical concepts, such as data flow and part-whole relation-
ships. There is nothing specifically about car maintenance
in the statement of the rules.

car$

LFhub$

stud1$ stud2$ stud3$

LRhub$

stud1$ stud2$ stud3$

RFhub$

stud1$ stud2$$ stud3$

RRhub$

stud1$ stud2$ stud3$

Figure 10: Part-whole knowledge.

Now let’s see how these heuristics function in the typ-
ical interaction shown in Figure 8. The first suggestion,
based on the data flow heuristic, appears on line 4. The
user accepts the suggestion, leading to the creation of a new
abstract task type called Unscrew/PutDown. Notice that
system automatically generates a convenient default name
for new abstract task types created in response to sugges-
tions. The user can rename these using the Rename button
at the top middle of the GUI.

The second suggestion, based on the parts heuristic, ap-
pears on line 7 and results in the new abstract task Un-
screw/Putdown*3, which corresponds to UnscrewHub in Fig-
ure 7.

The interaction proceeds now in a parallel fashion to Fig-
ure 7, with the user answering yes to the next three sugges-
tions. Then, on line 28, the user first answers no. This sug-
gestion is generated by the data flow heuristic (in this case
applied to abstract tasks). Because the user has just exe-
cuted the first step of the front-back tire rotation pattern,
which is to put Tire3 (that was originally on the LRhub)
onto the LFhub, it seems plausible that she already has in
mind the idea of grouping this with the next three steps, not
the previous task.

The next suggestion, appearing on line 32, suggests in
fact grouping these steps into a new abstract task, which
corresponds to Rotate in Figure 7. The user accepts this
suggestion.

The second instance in which the user answers no appears
on line 37, in answer to another suggestion generated by the
data flow heuristic. This is a case in which a yes answer
would also be reasonable. All that answering yes would do
is to add an extra layer of grouping near the top of the
hierarchy, grouping together what are called UnhangHubs
and Rotate in Figure 3.

To save space, the remaining three suggestions are elided.
They follow the same pattern as the first three suggestions,
just as the elided lines in Figure 7 follow the same pattern
as lines 1–13 in that interaction.

In summary, notice that in this interaction the user exe-
cuted only 11 tasks, as compared to 28 in Figure 7. Even
with answering 12 yes/no questions, the user in this inter-
action is expending less effort to achieve the same quality
plan. This effect is borne out by the user study described in
the next section.

4. EVALUATION
We conducted a study with non-expert users to evaluate
both the usability of our algorithms in general, and more
specifically, the contribution of the suggestions toward im-
proving the interaction and learning.

4.1 Study Design
We conducted a between-subjects study to evaluate two con-
ditions: a No-Suggestions condition, in which the robot pro-
vided no repetition or grouping suggestions, and a Sugges-
tions condition, in which these suggestions were made when



(a) Start configuration (b) Goal configuration

Figure 11: Start and Goal Configurations

appropriate. Participants in both conditions were able to
use the GUI to add hierarchy to their task themselves, as in
Figure 7.

A total of 32 college-age participants (18 female and 14
male) were recruited. Most of the participants (15 female
and 8 male) did not have programming experience. 15 par-
ticipants were assigned to the No-Suggestions condition and
17 to the Suggestions condition. The two conditions were
balanced for gender and programming experience.

4.2 Task
The study consisted of a training activity (in a blocks world
domain) followed by the main study based on tire rotation.
All participants were given the same training activity to de-
velop familiarity with the GUI and the overall interaction
style. Specifically, participants were given step-by-step writ-
ten instructions for building a tower using six colored blocks
and two primitive actions: Pickup and PutOn. Participants
were guided through a series of steps, beginning with simply
moving blocks around, to teaching a new abstract task, to
reusing already learned abstract tasks to build a tower. The
training process did not include any robot suggestions, to
avoid biasing participants in the No-Suggestions condition.
All of the participants successfully completed the training
steps and did not have any questions for the experimenter
afterwards.

After training, participants performed the main study ac-
tivity in which they were asked to teach the robot how to
rotate the tires from the start configuration to the goal con-
figuration shown in Figure 11. Participants were given de-
tailed written descriptions of the six primitive actions de-
scribed in Section 2 and a terminology picture similar to
Figure 4, but no step-by-step instructions on how to per-
form tire rotation. The GUI used by participants in both
conditions was identical. The only difference between the
two conditions was whether or not repetition and grouping
suggestions were provided.

4.3 Procedure
Upon arrival, participants were asked to sign an informed
consent form and were surveyed about their programming
experience. Following this, participants were given the writ-
ten instructions for the training activity; the experimenter
started the learning system and left the room until training
was complete. Following training, the experimenter pro-
vided the written tire rotation instructions, started the sys-
tem and again waited outside the room. Upon completion
of the tire rotation task, participants were asked to fill out a
questionnaire about their experience. Participants were then
asked to teach the tire rotation task a second time (under the
same study condition), followed by the same questionnaire.

We had participants perform two trials of the main study
task because we anticipated that improved performance would

occur as they gained experience with the GUI. As we will
see in the results below, we did observe this effect.

4.4 Measures and Analysis
We used the following three objective measures to evaluate
participant performance:

• Teaching Effort: The effort expended by the human,
measured as the number of times the teacher pressed
the Execute button during the interaction (for both
primitive and abstract tasks). We think of this as the
number of task instructions communicated by the hu-
man to the robot.

• Plan Quality: The quality of the learned tire rotation
plan, measured as the number of abstract tasks learned
(and used). We choose this measure because hierarchy
is a valuable property in complex plans for both com-
munication and reuse.

• Teaching Efficiency: The efficiency of the interaction,
measured by dividing plan quality by the teaching ef-
fort (using the definitions above).

The two-tailed Kolmogorov-Smirnov test was used for the
evaluation of these measures.

4.5 Hypotheses
We formed the following five hypotheses about the effect of
suggestions on the learning interaction based on the models
we presented earlier and findings from human-computer and
human-robot interaction studies.

• Hypothesis 1: Participants will expend less teach-
ing effort in the Suggestions condition than in the No-
Suggestions condition.

• Hypothesis 2: The quality of the learned plans will
be higher in the Suggestions condition than in the No-
Suggestions condition.

• Hypothesis 3: The teaching efficiency will be greater
in the Suggestions condition than in the No-Suggestions
condition.

• Hypothesis 4: In the Suggestions condition, partici-
pants who accepted more suggestions will have better
measures of teaching effort and plan quality.

• Hypothesis 5: All participants in both conditions
will be able to successfully teach the tire rotation task
by the second trial.

4.6 Results and Discussion
Table 1 and Figure 12 summarize the results of our study,
which support Hypotheses 1–4, but not Hypothesis 5.

Teaching Effort: Analysis of the number of Execute button
presses during the training process shows that the teaching
effort was significantly higher in the No-Suggestions than in
the Suggestions condition, supporting Hypothesis 1. Notice
that the p-value in the second trial is lower than in the first
trial due to the large reduction in Execute button presses by
participants in the Suggestions condition during the second
trial. We attribute this difference to participants adapting
to the robot’s suggestions. A reduction in effort was also



Mean± SD

Execute Button
Presses

(First Trial)

Execute Button
Presses

(Second Trial)

Abstract Tasks
Learned

(First Trial)

Abstract Tasks
Learned

(Second Trial)

Efficiency

(First Trial)

Efficiency

(Second Trial)
No-suggestions 62.07 ± 19.10 51.40 ± 27.22 2.87 ± 2.83 2.47 ± 1.77 0.04 ± 0.03 0.06 ± 0.06

Suggestions 50.47 ± 42.68 26.65 ± 16.42 7.94 ± 5.48 8.53 ± 3.92 0.31 ± 0.31 0.41 ± 0.30
p-value 0.05 0.01 0.02 � 0.001 � 0.001 0.001

Table 1: Comparison of objective measures between the two conditions.

observed in the No-Suggestions condition, but the change is
much smaller. To further highlight the impact of suggestions
on teaching effort, Figure 12(a) shows via linear regression
how the number of Execute button presses in both trials
decreases with the number of robot suggestions accepted by
the user, partially supporting Hypothesis 4.

Plan Quality: Analysis of the number of abstract tasks learn-
ed shows that the quality of plans was significantly higher in
the Suggestions than in the No-Suggestions condition, sup-
porting Hypothesis 2. Additionally, Figure 12(b) shows via
linear regression how the number of abstract tasks learned
in both trials increases with the number of robot suggestions
accepted by the user, further supporting Hypothesis 4.

Teaching Efficiency: Analysis of the efficiency measure pro-
vides insight into how teaching effort and plan quality vary
in combination between conditions. Teaching efficiency (see
last column of Table 1) is significantly higher in the Sugges-
tions than in the No-Suggestions condition, supporting Hy-
pothesis 3. Additionally, we observe greater improvement
in efficiency between the first trial and the second trial for
participants in the Suggestions condition.

Hypothesis 5 predicted that by the second trial all partici-
pants would successfully teach the tire rotation task. Unfor-
tunately, this hypothesis was not supported by our study. In
the second trial, for 3/15 participants in the No-Suggestions
condition and 4/17 in the Suggestions condition, even though
the world state was in the goal configuration at the end of
their teaching session, the learned plan would not success-
fully achieve the goal configuration from the start configura-
tion specified in Figure 11. This is a problem we are looking
to solve in the next iteration of our system.

Finally, it is interesting to note that in informal post-study
debriefing several participants in the Suggestions condition
commented that they initially rejected the robot’s sugges-
tions because there had been no suggestions in the training
activity and they were were not sure about what the ef-
fect of saying yes would be. This was an unintended side
effect of our study design, in which we sought to eliminate
bias by following the same training procedure in both condi-
tions. Nevertheless, the Suggestions condition showed clear
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Figure 12: Impact of accepted suggestions.

advantages over No-Suggestions despite this limitation, and
we expect better results could have been achieved with a
training process tailored for the Suggestions condition.

We did not see any significant effect of programming ex-
perience on our results.

5. RELATED WORK
There is extensive research (involving both robots and vir-
tual agents) on learning from demonstration [1], hierarchical
task learning, interactive task learning and learning from a
single task iteration. However, other than Rybski et al.,
discussed below, we do not know of any other work that
combines all of these aspects, as our present work does.

Research on hierarchical task learning includes both learn-
ing from demonstration and learning from instructions ap-
proaches. LfD approaches generally focus on learning from
multiple demonstrations. For example, in robotic research,
Nicolescu and Mataric [12] implemented a LfD system that
enables a robot to learn and refine representations of com-
plex tasks and to generalize multiple demonstrations into
a single graph-like representation. In [16], Veeraraghavan
and Veloso developed a similar LfD approach for teaching a
robot tasks with repetitions. Hayes and Scassellati [6] learn
HTNs through multi-agent coordination with humans in the
loop.

Garland et al. [4] developed an offline, purely software sys-
tem that generalizes an HTN from a set of execution traces
(demonstrations). A novel aspect of their system was sup-
port for a domain expert to refine past demonstrations. In
addition to relying on multiple demonstrations, this system
does not make any suggestions—the user must take all of
the initiative in building the HTN.

Most research on interactive task learning goes under the
rubric of “active learning” and involves the system asking
questions of the user. We prefer the term “interactive” to
emphasize the bidirectional nature of the communication
shown in Figure 1.

For example, Chernova and Veloso [3] developed a policy
learning algorithm in which the robot asks the human to pro-
vide labels for states in which the robot has a low certainty.
Focusing more on social interaction and broader question
types, Cakmak and Thomaz [2] have formalized three ques-
tion types—label, demonstration and feature requests—and
studied their use in LfD. Hayes and Scassellati [7] also gener-
ate demonstration requests. None of these systems, however,
generate suggestions for grouping.

The most common approach to learning from a single
task iteration is via instructions. For example, Huffman
and Laird [8] explored the requirements for designing an in-
structable agent, and showed that a simulated robotic agent
could learn useful instruction in natural language. In [9],
Mohan and Laird extended this work by instantiating their
design in the Soar cognitive architecture. Their work uses



an HTN as the task representation, but does not include
demonstrations.

The closest work to ours is by Rybski et al. [15], who de-
veloped an algorithm that combines spoken language under-
standing, dialog and physical demonstration to learn com-
plex plans. Their task representation allows abstract tasks
to be constructed from simpler subtasks in order to cre-
ate hierarchical structures. The robot can also verify the
HTN with the human by asking questions and allowing the
human to add additional conditional cases. However, their
approach for learning task structure differs from ours in that
it does not leverage ordering and data flow constraints. Fur-
thermore, the robot’s questions are limited to filling in un-
specified conditions (e.g., missing else statements) while our
suggestions are aimed at improving the plan quality and
teaching efficiency.

6. NEXT STEPS
Our main next step is to move the human-robot interac-
tion from simulation into a shared physical space using a
PR2 robot and an approximately life-size plastic and wood
mockup of the relevant parts of a car. To circumvent the
need for computer vision processing, we will place the user,
robot and mockup inside of a Vicon motion-capture cell and
attach markers to objects as needed. This will make it possi-
ble to move away from a GUI-style interaction and towards
a more natural, situated interaction. If the GUI does not
totally disappear in this context, it will be moved to a hand-
held touch screen.

For example, instead of pressing a primitive task button,
selecting the input object(s) from a menu, and then press-
ing the Execute button, the user will be able to physically
demonstrate a primitive task by picking up, putting down,
screwing, unscrewing objects, etc. With only a small num-
ber of primitive task types, we expect to easily develop a
classifier to recognize which primitive action is being per-
formed and its inputs. For learned abstract actions, a GUI
(or perhaps voice recognition) may still be used to name the
action, but the selection of input(s) will be done by gesture,
such as pointing to or touching the appropriate object(s).
We will study how these changes affect the learning process,
which will then inform how other communication functions
of the GUI, such as the Teach New Task and Task Com-
plete buttons, the chat pane and the display of the current
hierarchical structure should be handled.

In a more theoretical direction, our next steps include
exploring how to extend our algorithms to support top-down
learning and then a flexible combination of top-down and
bottom-up. Among other things, this involves integrating
learning from demonstration with learning from instruction
techniques. We also plan to explore improvements to our
existing heuristic rules and new heuristics for making useful
suggestions, especially as we extend our task domain beyond
tire rotation.

Finally, working with a physical robot will inevitably pre-
sent us with the challenge and opportunity to explore the
very broad issue of how uncertainty and failure in robotic
systems affects the learning process.

7. ACKNOWLEDGMENTS
This work is supported in part by the Office of Naval Re-
search under Grant N00014-13-1-0735.

8. REFERENCES
[1] B. D. Argall, S. Chernova, M. Veloso, and

B. Browning. A survey of robot learning from
demonstration. Robotics and Autonomous Systems,
57(5):469–483, 2009.

[2] M. Cakmak and A. L. Thomaz. Designing robot
learners that ask good questions. In ACM/IEEE
International Conference on Human-Robot
Interaction, pages 17–24. ACM, 2012.

[3] S. Chernova and M. Veloso. Interactive policy learning
through confidence-based autonomy. Journal of
Artificial Intelligence Research, 34(1):1, 2009.

[4] A. Garland, K. Ryall, and C. Rich. Learning
hierarchical task models by defining and refining
examples. In International Conference on Knowledge
Capture, pages 44–51, 2001.

[5] B. J. Grosz and C. L. Sidner. Attention, intentions,
and the structure of discourse. Comput. Linguist.,
12(3):175–204, July 1986.

[6] B. Hayes. Social hierarchical learning. In Proceedings
of the 8th ACM/IEEE International Conference on
Human-Robot Interaction (HRI 2013) Pioneers
Workshop, 2013.

[7] B. Hayes and B. Scassellati. Discovering task
constraints through observation and active learning. In
IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2014.

[8] S. B. Huffman and J. E. Laird. Flexibly instructable
agents. Journal of Artificial Intelligence Research,
3:271–324, 1995.

[9] S. Mohan and J. E. Laird. Towards situated,
interactive, instructable agents in a cognitive
architecture. In AAAI Fall Symposium Series, 2011.

[10] A. Mohseni-Kabir, S. Chernova, and C. Rich.
Collaborative learning of hierarchical task networks
from demonstration and instruction. In RSS
Workshop on Human-Robot Collaboration for
Industrial Manufacturing, Berkeley, CA, July 2014.

[11] A. Mohseni-Kabir, C. Rich, and S. Chernova.
Learning partial ordering constraints from a single
demonstration. In ACM/IEEE International
Conference on Human-robot interaction, pages
248–249, 2014.

[12] M. N. Nicolescu and M. J. Mataric. Natural methods
for robot task learning: Instructive demonstrations,
generalization and practice. In AAMAS, pages
241–248, 2003.

[13] C. Rich. Building task-based user interfaces with
ANSI/CEA-2018. IEEE Computer, 42(8):20–27, 2009.

[14] C. Rich and C. L. Sidner. Using collaborative
discourse theory to partially automate dialogue tree
authoring. In Proc. Int. Conf. on Intelligent Virtual
Agents, pages 327–340, Santa Cruz, CA, Sept. 2012.

[15] P. E. Rybski, K. Yoon, J. Stolarz, and M. M. Veloso.
Interactive robot task training through dialog and
demonstration. In ACM/IEEE Int. Conf. on
Human-Robot Interaction, pages 49–56, 2007.

[16] H. Veeraraghavan and M. Veloso. Learning task
specific plans through sound and visually interpretable
demonstrations. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages
2599–2604, 2008.


