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Abstract—The assumption that we can preprogram robots
with all the information necessary for their function becomes
impractical as the range of robotics applications grows. One
widely proposed solution is the specification of reusable task
plans, or recipes, consisting of a sequence of primitive actions.
However, the primitive actions, such as unscrewing a nut in a car
maintenance task, cannot always be predefined and thus must
be learned for a particular robot platform and workspace. In
this work, we present a novel algorithm that enables a robot
to identify a reusable motion trajectory associated with each
primitive action of a plan. Our approach segments the motion
data captured during the demonstration of a human performing
the given task, while also leveraging the human’s verbal cues. We
evaluated our algorithms in a pilot study with 6 users executing
90 primitive actions.

I. INTRODUCTION

In order to make the dream of robots assisting humans in
their home and office environments possible, we must enable
robots to learn from humans. We are specifically interested
in acquiring knowledge of reusable primitive actions from
human demonstrations which can then be leveraged to learn
complex procedural tasks [1]. In this work, we focus on the
problem of identifying reusable primitive actions from human
demonstrations; the resulting primitive actions can then be
used in learning complex tasks using a variety of techniques
[1]. Unlike prior work in action segmentation [2], [3], [4], our
approach leverages narrations as another type of information
that humans can naturally provide as part of the human-robot
interaction. Our approach is robust with respect to variability
in humans demonstrations and does not require additional
assumptions about the primitives, such as action length. We
evaluated our algorithms in a car maintenance task with 4
primitive actions: Screw, Unscrew, Hang, and Unhang.

II. PROBLEM AND APPROACH

In this paper, we contribute a novel approach enabling a
robot to identify the reusable primitive actions in a human
demonstration of a complex procedural task. The ultimate goal
of our work is to send the best example trajectory for each
primitive action to an action learning algorithm which will
abstract the trajectory so the robot can use it effectively in
other situations.

We extract motion primitives from demonstrations of a
human user; in our work, we asked users to name each prim-
itive as they are performing the primitive actions following
a script, or recipe. The narration of the primitive may occur
at an unpredictable time during the primitive’s demonstration.
Therefore, the narration can only be used as a rough estimate

of the beginning and the end of the primitive and we need an
algorithm to find the correct boundaries of each primitive.

Our approach compares demonstrations of the same prim-
itive in different contexts to find the boundaries of each
primitive. By different contexts, we mean that in the demon-
strated sequence the primitive may be executed with different
preceding and following primitives. The consistent part of
the demonstrations in different contexts are associated with
the primitive action; the inconsistent parts are called tran-
sition motions. The motivation for this analysis is that on-
the-fly path planning will be used to generate the transition
motions between each consecutive primitives when they are
reused. Trimming the transition motions from the main body
of actions is important because it increases their reusability
in different environments, e.g. with different obstacles. For
example, suppose a user demonstrates Screw(stud) followed by
PickUpNut(table) with a walking motion between the position
of the stud and the table. If the walking motion is considered
as part of the Screw or the PickUpNut actions, one of these
primitives is not reusable in another environment with an
obstacle in the way. The goal of our work is thus to correctly
identify each primitive action including only and all of the
consistent parts of the primitive’s demonstrations.

III. METHOD AND ALGORITHM

We address the above problem in the context of a car
maintenance domain. We use a motion capture system to
obtain the position of each object: a tire, a hub, a nut, and a
stud. We also capture the position of the human’s right hand.
We ask users to explain what they are doing using a predefined
set of primitive action labels (Fig. 1, green arrows) including
the reference object involved in executing each primitive (e.g.,
Screw(stud)). The position of each object and the human’s
right hand, and the narrations are given to our algorithm. The
narration timing for each primitive action was determined by
looking at the videos after the user finished executing the
whole sequence.

Our algorithm uses the GrammarViz [5] motif discovery
tool which is based on two other algorithms: a) Symbolic
Aggregate approXimation (SAX), which discretizes the input
time series into a string, and b) Sequitur, which induces a
context-free grammar from the string. Each non-terminal in
the context-free grammar generated by the Sequiter algorithm
identifies a recurrent subsequence (motif).

GrammarViz operates on one-dimensional data; in our work
we use the distance of the manipulator relative to the reference
object as our single dimension (e.g., for the Screw action, the
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distance of the right hand relative to the stud). Alternatively,
dimensionality reduction methods could also be used to con-
vert the full motion data into a single dimension.

As mentioned earlier, the narrations provide a rough es-
timate of the boundaries of primitive actions; we use them
to eliminate the motion data of the nonadjacent primitives.
Thus, as the first step of the algorithm, for each primitive
label, we find all the instances of that primitive and for each
instance, we extract the motion data for that instance between
the preceding and the following narrations (see bold arrows
at top of Fig. 1). Then, in order to apply GrammarViz, we
concatenate the motion data for each repeated instance with
zeros in between and use the result of the concatenation as the
data for identifying each primitive. This data for each primitive
action is then given to GrammarViz for analysis (Fig. 2 shows
the motion data that is given to GrammarViz).

GrammarViz has two important parameters which are used
by the SAX algorithm. Those parameters greatly influence the
discretization level and the level of similarity of the underlying
subsequences. Our algorithm therefore does an exhaustive
search, trying GrammarViz with all the reasonable parameter
values. For each set of parameters, running GrammarViz
generates a set of motifs; our algorithm looks through this
set to find the best motifs. Some clearly bad motifs can easily
be deleted from this set. Among the remaining motifs, our
algorithm looks for the motifs that best describe the data.
Examples of good and bad motifs for the Screw action are
shown in Fig. 2. Each highlighted section in the depicted
motifs corresponds to an instance of the Screw action.

In our algorithm, each primitive action is analyzed indepen-
dently of the other primitives; therefore, there is no guarantee
that their motifs do not overlap with each other which would
violate the sequence’s time constraints. To solve this problem,
we consider all possible valid permutations of the motifs that
satisfy the sequence’s time constraints and sort them based on
the cumulative utility of the instances of the primitive actions
in the initial demonstrated sequence.

We use a heuristic based on motif density to compute the
utility of each instance of a primitive action. Each motif gen-
erated by GrammarViz covers a segment of the data; counting
the number of covered segments gives a density histogram
over the motifs. For each instance of a primitive action, the
area under the density function in the instance’s interval is the
utility of that instance. By computing the cumulative utility
of all the instances in the demonstrated sequence and sorting
them, we find the set of motifs that best explain the data. Each
of the motifs in that set corresponds to the best instances of
each primitive action.

We conducted a preliminary evaluation of the algorithm
explained above in a pilot study with 6 users, 4 primitive types,
and 90 primitive action instances, and observed that 73% of
the primitive actions were correctly identified. Although these
are promising results, the ultimate goal of our algorithm is to
identify the best example trajectory to pass to the primitive
learner and avoid using secondary examples.

GrammarViz quantizes the continuous motion data into

Fig. 1: Raw motion data with narrations

(a) A good motif for Screw (b) A bad motif for Screw

Fig. 2: Example motifs for Screw generated by GrammarViz

characters. This enables the software to find the variable length
motifs, but it also removes a lot of information that exists in the
initial motion data. The last part of our algorithm compensates
for this issue by comparing the raw motion data of primitive
instances with each other. We measure the similarity between
each two instances using Dynamic Time Warping (DTW)
algorithm. The instance with the minimum average distance
from other instances will be then sent to the primitive learning
algorithm. We assume that our primitive learner prefers quality
over quantity. If the learning benefits from multiple instances
of the primitive action, all the instances can be sent (and
they can be sorted based on a quality measurement). We will
evaluate this part of the algorithm in our future work to see if
a more sophisticated quality measurement approach, such as
a clustering algorithm, is needed. In the future, we will do a
thorough evaluation of our algorithm in a natural human-robot
interaction scenario and we will explain its limitations in more
detail.
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