
Collaborative Learning of Hierarchical Task
Networks from Demonstration and Instruction

Anahita Mohseni-Kabir, Sonia Chernova and Charles Rich
Worcester Polytechnic Institute, Worcester, MA, USA

{amohsenikabir, soniac, rich}@wpi.edu

Abstract— We present an approach for learning complex
procedural tasks from human demonstration. Our main
innovation is to view the interaction between the human
and the robot as a mixed-initiative collaboration. Our work
utilizes hierarchical task networks to enable the robot
to learn complex procedural tasks. Our contribution is
to integrate hierarchical task networks and collaborative
discourse theory into the learning from demonstration
paradigm to enable robots to learn complex tasks in
collaboration with the human teacher. We demonstrate
techniques for generalization based on merging multiple
demonstrations and policy refinement through question
asking. We validate our approach in a car maintenance
domain.

I. INTRODUCTION
In this work, we focus on advancing the state of

the art in intelligent agents that can learn complex
procedural tasks from humans. Our work draws on
several research areas, primarily robot learning from
demonstration (LfD), hierarchical task network (HTN)
planning, and collaborative discourse theory. Our ap-
proach is to view the interaction between the human
teacher and the learning agent as a mixed-initiative
collaboration, in which both parties are committed to
the shared goal of successful learning, and in which both
parties make contributions in the form of both actions
and communication, including verbal instructions, asking
questions, and critiquing. For this, we draw heavily on
collaborative discourse theory and tools.

In this paper, we present algorithms that will allow a
robot to learn complex tasks from a human teacher. Our
approach is based on the conjecture that it is often easier
for people to generate and discuss examples of how to
accomplish tasks than it is to deal directly with task
model abstractions. Our approach is thus for the robot
to iteratively learn tasks from human demonstrations
and instructions1. In addition, the robot is able to ask
questions, to which human responds. By engaging the
robot as an active partner in the learning process, and by

1We differentiate between demonstration and instruction, and use
instruction to indicate that the teacher tells the robot the steps of a task
without any execution of these steps, and demonstration to indicate that
the robot (or teacher) also performs the desired action.

using the hierarchical structures, we believe that complex
tasks can be naturally taught by non-expert users.

Finally, because our target application domain is learn-
ing complex procedural tasks, such as manufacturing,
equipment inspection and maintenance, we use HTNs as
the representation of the learned knowledge. HTNs are a
powerful framework for representing and organizing task
models that is both efficient for computers and natural
for humans. The hierarchical structure facilitates reusing
knowledge in similar domains. In our work, we use
the ANSI/CEA-2018 [11] standard for HTNs. In this
standard, an HTN is an abstract, hierarchical, partially
ordered representation of the actions typically performed
to achieve goals in the application domain. This choice
of representation is also synergistic with collaborative
discourse theory, which is based on HTNs.

In summary, our work makes contributions in the
following areas:
1. a unified system that integrates hierarchical task

networks and collaborative discourse theory into the
learning from demonstration;

2. a novel approach for learning task structure from a
small number of demonstrations, including the task
hierarchy, temporal constraints and inputs/outputs of
a task;

3. novel generalization techniques that reduce the num-
ber of demonstrations required to learn the task
through input generalization and merging;

4. integration of mixed-initiative interaction into the
learning process through question asking.

In the following sections, we begin by discussing re-
lated work in the areas of collaborative discourse theory
and robot learning from demonstration. We then present
an overview of our system and describe the learning,
generalization and question asking components in detail.
We then present validation results in a simulated domain.

II. RELATED WORK

In this section, we discuss related work in collabo-
rative discourse theory and robot learning from demon-
stration, particularly as applied to planning.

1

Workshop	  on	  Human-‐Robot	  Collaboration	  for	  Industrial	  Manufacturing,	  
Robotics	  Science	  and	  Systems,	  Berkeley,	  CA,	  July	  2014.



A. Collaborative Discourse Theory

Discourse is the technical term for an extended com-
munication between two or more participants in a shared
context, such as collaboration. Collaborative discourse
theory refers to a body of empirical and computational
research about how people collaborate [5], that uses the
same hierarchical task abstraction notions expressed in
HTNs. We are applying the principles of collaborative
discourse theory in this work to improve the effective-
ness of the interaction between the human teacher and
robot learner (such as to help them jointly manage their
focus of attention) using a software tool called Disco,
which is the open-source successor to Collagen [12].

B. Learning from Demonstration

Several past approaches have combined planning and
learning from demonstration [1]. Nicolescu and Mataric
[9] implemented a system for LfD that enables a robot to
learn and refine representations of complex tasks, and to
generalize multiple demonstrations into a single graph-
like representation. In [14], Veeraraghavan and Veloso
presented a demonstration based approach for teaching
a robot sequential tasks with repetitions. Our approach
differs from the above methods in representation, and
in that it integrates learning through demonstration,
instruction and asking questions. Niekum et al. [10]
presented a method for automatically segmenting low-
level trajectory demonstrations, recognizing repeated
skills, and generalizing complex tasks from unstructured
demonstrations. In contrast, our work focuses on high-
level task learning, in which the task structure is more
intuitively clear to users, allowing us to leverage human
knowledge to learn from fewer demonstrations.

HTNs have been integrated with LfD by Rybski et
al. [13] in an algorithm that combines spoken language
understanding, dialog, and physical demonstration. Their
task representation allows tasks to be constructed from
smaller subtasks in order to create complex hierarchical
structures. The robot can also verify the task with the
human through dialog and permit the human to add
additional conditional cases. Their approach differs from
ours in that it does not focus on learning ordering con-
straints, parametrization, and generalization from mul-
tiple demonstrations. Furthermore, the robot’s questions
are mostly focused on filling unspecified conditions(i.e.
else statements) while our work seeks to ask more
general questions about the HTN structure.

An important recent innovation in LfD, which we will
employ in our work, is to incorporate active learning, by
which we mean that the robot requests certain informa-
tion by asking questions. The key research challenge in
active learning is to formulate questions that the user
can understand and which will have a high utility to

the robot’s learning algorithm. Chernova and Veloso [3]
developed confidence-based autonomy (CBA), an inter-
active algorithm for policy learning from demonstration
which enabled the robot to ask the human to label the
states in which it is uncertain of which action to take.
In later work, Cakmak and Thomaz [2] formalized three
query types – label, demonstration and feature questions
– and studied their use in LfD.

Several other works have focused on learning from
instruction. Huffman and Laird [6] explored the require-
ments for instructable agent design, and demonstrated
that a simulated robotic agent could learn useful in-
struction in natural language. In [7], Mohan and Laird
extended this work by instantiating their design in the
Soar cognitive architecture. In this work, they also used
a hierarchical structure for their task representation. Our
approach differs from theirs in our focus on learning
ordering constraints, parametrization and generalization
and independence from a particular cognitive architec-
ture. Our additional distinction is that our robot will
ask questions about the structure of the tasks, for ex-
ample concerning ordering constraints or applicability
conditions, whereas in their approach, the questions are
focused on learning the steps of the tasks.

Garland et al. [4] present a task model development
environment that infers task models from examples. The
novel aspect of their environment was the support for a
domain expert to refine past examples. In contrast to our
work, which seeks to learn from very few examples, the
presented work requires many demonstrations from the
human teacher. Moreover, our system can also ask ques-
tions from the human teacher, whereas their approach
entirely relies on the refinement from the teacher.

III. SYSTEM OVERVIEW

Fig. 1 presents an overview of our system architecture.
The key collaborative learning components are high-
lighted in blue and are discussed in detail in Section IV.

The architecture consists of two subsystems, learning
and execution. The learning subsystem is responsible
for learning the hierarchical task structure, ordering con-
straints, and inputs/outputs of tasks. After learning this
general structure, we apply the Generalization module,
which improves the generality of the task model through
a set of heuristics. The Question Asking module is
responsible for asking questions. The entire learning pro-
cess is supported by Disco, an implementation of collab-
orative discourse theory and ANSI/CEA-2018. Disco’s
dialog management capabilities are used to maintain a
focus stack which keeps track of the current topic and
has expectations for what needs to be said or done next.

During the execution of a learned task, the Disco
planner decomposes each non-primitive task in the HTN
into its subtasks. When the planner reaches a primitive



Fig. 1: System architecture

task, the primitive task is sent as an action command
to the execution subsystem. The execution subsystem
includes the Motion Planner, Abstract World Model
(AWM), and the learning agent embodied either as a
physical PR2 or as a Gazebo simulation. The Motion
Planner receives primitive task commands, generates
plans for their execution, and sends the plans to the PR2
or Gazebo. The AWM module tracks the current state of
the world based on the robot’s sensor data. Failures in
the execution of the task are propagated back to Disco
both through the Motion Planner (planning failure) and
AWM (execution failure). Fig. 2 presents a snapshot of
the execution of RotateTires task in Gazebo with
the recent executed primitives shown under it.

The inputs to the system are the human’s demonstra-
tions, instructions and answers to questions. Fig, 4 shows
an example learning scenario for the RotateTires
task that utilizes all three types of interaction – demon-
strations, instructions and questions. The goal of this
process is to learn a task representation similar to the
hand-coded HTN shown in Fig. 3 (the exact struc-
ture of the hierarchical model is determined by the
human’s demonstrations, instructions and answers to
questions, and it may change based on the order of the
inputs). In the current implementation, the user interacts
with the robot via a GUI connected to Gazebo. This
graphical user interface is completely menu-based and
does not involve any natural language processing. Each
demonstration starts by clicking on the Start button.
The human teacher then chooses the primitive or non-
primitive tasks as the steps of this new demonstration.
If the chosen task is a defined non-primitive task or a
primitive task, the task will be executed and learned by
the robot as part of the new demonstration, otherwise
the task will be learned as part of the new instruction.
The demonstration ends by clicking on the Done button
(Fig. 4 shows the log of this interaction.). Fig. 5 shows an
example interaction between the robot and human during
task execution. Here again, the robot may ask questions
about task execution preferences.

Fig. 2: Execution of RotateTires task in Gazebo

IV. LEARNING SUBSYSTEM

In this section, we provide a comprehensive overview
of the learning subsystem and its components.

A. Task Structure Learning Module

The Task Structure Learning module is responsible for
learning the task structure of the current demonstration
sequence and generating the task model. This module
integrates three functions:

1) Generating the Task Hierarchy: One of the core
functionalities of the learning subsystem is to learn
the implicit hierarchical structure of the demonstration
sequence. Each task in an HTN has one or more recipes,
or methods for decomposing non-primitive actions. Each
recipe specifies a set of steps that are performed to
achieve the non-primitive action that is the collective
objective of the steps (e.g., rotate tires in an x-pattern
or front to rear). An optional step in an HTN represents
a step that is not required for execution and whose
execution depends on user preference.

In each new demonstration sequence, the user either
teaches a new non-primitive action (e.g., UnscrewHub)
or demonstrates a new recipe for an existing non-
primitive action (e.g., xPattern) by using existing
non-primitive and primitive actions.

The system provides the user with the flexibility to
teach tasks bottom-up, top-down, or the mix of these
approaches. In the bottom-up approach, the user starts



Fig. 3: Hand coded HTN for tire rotation

Fig. 4: Scenario for learning the HTN shown in Fig. 3

with the primitive tasks and combines them into larger
non-primitives (the demonstration of UnscrewStud
in Fig. 4 is an example of bottom-up approach.). In
top-down approach, the user starts with the top-level
non-primitives (e.g., RotateTires, as in Fig. 3)
and incrementally decomposes until the primitives are
reached (the demonstration of RotateTries and
UnscrewHub in Fig. 4 are examples of top-down ap-
proach.). Thus, the user’s demonstrations help the robot
to iteratively complete its hierarchical task model.

2) Associating Inputs/Outputs: Each task within the
HTN has zero or more inputs and outputs associated
with it. Examples of inputs and outputs can be seen in
Figure 3, preceded by a question mark. The input of a
task must be specified by the user at demonstration time
(e.g., a specific hub must be selected when performing
a RemoveTire action), thus allowing the input to be
added to the task definition. Determining the output of
a task is more complicated, since we must determine

Fig. 5: Scenario for executing the HTN shown in Fig. 3

whether the output of a subtask relates to this step alone
or must be propagated up the hierarchy. The algorithm
for output propagation is beyond the scope of this paper.

3) Learning the Temporal Constraints: Demonstra-
tions are intrinsically totally ordered, i.e., any set of
(discrete, non-overlapping) actions performed in the real
world occur in sequence. However, in many cases, only
some of the demonstrated ordering is fixed. For example,
in tire rotation task, even though you must demonstrate
unhanging all four tires in some order, the order does
not matter. Learning the minimum required ordering
constraints is important to have a more flexible and
reusable plan.

One of the contributions of the paper is an automated
algorithm for finding the temporal constraints between
steps in a recipe. Past approaches have mostly focused on
learning these constraints from multiple demonstrations,
which requires many demonstrations in a task with many
steps. In addition to using past approaches, we are using
a new technique [8], which enables us to learn these
temporal constraints from a single demonstration.

The general rule for finding the temporal constraints is
that if the output of one step is the input of another step,
then these steps are ordered. To give a concrete example
in tire rotation task, suppose the user demonstrates
UnhangHub task with a hub as an input by using two



primitive actions: Unhang with hub as its input and
tire as its output, and PutDown with tire as its
input. In this example, there is a temporal constraint
between Unhang and PutDown since the input to
PutDown is the output of Unhang (Fig. 3).

Other temporal constraints are found by propagat-
ing the inputs and outputs up to the root of the tree
and applying the mentioned general rule to them. For
example, as shown in Fig. 3, RemoveTires should
be done before Rotate since tires are the output of
Unhang which are then used as an input of HangTire
in Rotate.

B. Generalization Module

The generalization module performs two functions,
input generalization and merging, explained below.

1) Input Generalization: Generalizing over the inputs
of a task is useful because it makes the task structure
more reusable and flexible, and because it reduces the
number of demonstrations required for learning the task.
We have implemented two input generalization methods:

Type generalization: Suppose we have two instances
of the PickUp task with two different types of inputs,
Tire and Nut. Instead of maintaining two separate
actions with different types of inputs, our goal is to
generalize the input of the PickUp task as relating to
some more abstract type, such as MovableObject.
To aid in this generalization, we rely on a simple
object ontology that classifies objects of different types.
Specifically, when encountering two different inputs to
the same task (e.g., Tire and Nut), we reference the
ontology and designate the parent class, if any, as the
new input (e.g., MovableObject).

Part/whole generalization: Suppose we have
three inputs LFhub.StudA, LFhub.StudB, and
LFhub.StudC (the three studs on the left front hub)
as inputs of a ScrewHub task. Instead of representing
all three inputs explicitly, we generalize to one input,
namely the object which is their shared parent (LFhub).
This form of generalization significantly simplifies the
interaction between the human and the robot as it
eliminates the need for the user to specify three studs
explicitly in all following demonstrations.

2) Merging: Once the current demonstration se-
quence is encoded as an HTN using the above methods,
we check whether any previous demonstrations exist for
this task. If this is the only demonstration, then the
HTN remains unchanged. However, when the human
provides multiple demonstrations of the same task, the
system merges them to allow for generalization across
the two examples. This approach has three advantages.
First, this avoids adding a separate recipe for each
tiny difference between the new demonstration for a
specific task and the previously learned model. Second,

by merging different demonstrations and factoring the
common steps between them, we are postponing the
system’s needs to choose between the recipes, resulting
in a more robust system. Third, this reduces the number
of demonstrations required to learn the task.

Fig. 6 shows an example of merging two demonstra-
tions in tire rotation task. In this example, instead of
having two recipes for RotateTires task, we capture
their common steps by adding the task Rotate (the task
name is specified by the user).

The pseudocode for the merging algorithm is shown
in Algorithm 1. First, the MERGETASKS function is
called with current model (existing task) and the new
demonstration for the task. If the new demonstration is
satisfiable by the current model, there will be no changes
in the model and the merge ends (lines 2-3). If the new
demonstration is not mergeable with the current model,
the new demonstration will be added as an alternative
recipe of the current model (lines 6-7). Otherwise, if the
models are mergeable, the new demonstration will be
combined with current model using the MERGE function
(lines 4-5).

Mergeability is determined by the MERGEABLE
function through two steps: GetRootRecipes and
FindMaxLCS. The GetRootRecipes function re-
turns all possible recipes of the model (e.g., if this
function is called on the Rotate function in Fig. 3,
it will return the steps of xPattern recipe, and the
steps of frontRear recipe.). Then the FindMaxLCS
function is called to determine which recipe shares more
common steps with the new demonstration by using
Longest Common Subsequence (LCS) algorithm (line
12). If there are no shared steps between any of the
recipes and the new demonstration, the model and the
demonstration are not mergeable. Otherwise the recipe
with the most shared steps will be chosen to be merged
with the new demonstration.

To merge the LCS recipe with the new demonstration,
the MERGE function iteratively selects two pairs of
shared steps in the two HTNs, and merges the steps
between them. This process is illustrated in Figure 7.
First, given the new demonstration and the base recipe,
we add start and end steps to each (line 16). Next,
we calculate the overlap (using LCS) between the base
and the new (line 17). Then, for each pair of consecutive
steps in the overlapArray, we find the corresponding
steps in the base and new (lines 21-26) (note that
BI and NI are the steps between pairs of equivalent
consecutive steps in base and new, respectively). If
BI and NI are empty, we will continue by choosing the
next equivalent consecutive steps (lines 27-28). If NI is
not empty and BI is empty, we will add NI steps to
the model but we will mark them as optional steps (line



30), but if BI is not empty and NI is empty, we will
make BI steps in model as optional (line 32). If neither
of them is empty, we replace BI with a new task, and
BI and NI become alternative recipes in the new task
(lines 34-36).

Importantly, the merge operation is not commutative,
and thus changing the order in which demonstrations
are performed will change the hierarchical structure
of the HTN. However, the execution of the primitive
actions within the model is preserved, regardless of
demonstration order, ensuring correct execution of the
task regardless of demonstration order.

Algorithm 1 Merge algorithm
1: function MERGETASKS(model, demonstration)
2: if Statisfiable(model, demonstration) then
3: return
4: else if (maxLCS ← Mergeable(model, demonstration))
6= NULL then

5: Merge(maxLCS, demonstration)
6: else
7: AddAlternativeRecipe(model,demonstration)
8: end if
9: end function

10: function MERGEABLE(model, demonstration)
11: modelRootSeqs ← GetRootRecipes(model)
12: maxLCS ← FindMaxLCS(modelRootSeqs,

demonstration)
13: return maxLCS
14: end function

15: function MERGE(base, new) . base is the chosen
recipe, and new is the new demonstration

16: Add start and end to base and new
17: overlapArray ← Overlap(base,new)
18: for Pi ∈ overlapArray do
19: C1 ← Pi in overlapArray
20: C2 ← Pi+1 in overlapArray
21: B1 ← find pointer to C1 in base
22: B2 ← find pointer to C2 in base
23: N1 ← find pointer to C1 in new
24: N2 ← find pointer to C2 in new
25: BI ← steps between B1 and B2
26: NI ← steps between N1 and N2
27: if BI = empty ∧ NI = empty then
28: Do nothing
29: else if BI = empty ∧ NI 6= empty then
30: modelRecipe ← AddOptional(base,BI)
31: else if BI 6= empty ∧ NI = empty then
32: modelRecipe ← MakeOptional(base,NI)
33: else
34: modelRecipe ← MakeNewRecipe(BI)
35: demRecipe ← MakeNewRecipe(NI)
36: AddAlternativeRecipe(modelRecipe,demRecipe)
37: end if
38: end for
39: end function

C. Question Asking Module

The final component of our system is the Question
Asking module, which is central to our mixed-initiative
interaction system. The ability to ask questions is key to
any learning process. Since the robot and teacher repre-
sent knowledge differently, the teacher does not always
know what additional information the robot requires.
The robot is able to expedite the learning process by
asking questions when it lacks information. Additionally,
question asking decreases the burden on the teacher and
makes the interaction more natural. Our current system
supports five question types:

1. When the merging process results in the creation of
a new alternative recipe, the robot is able to ask
the user about its applicability conditions. For exam-
ple, a question such as “When should Rotate be
performed through: HangTire(LFtire,LRhub)
HangTire(RFtire,RRhub)...?”. In response,
the user can either add an applicability condition
(e.g., perform this recipe for all Ford models), or
not. By choosing the latter option, recipe selection
is postponed until execution, at which time the user
will be queried again with a choice of recipes.

2. Directly related to the above, when there is a choice
of multiple recipes available for execution, and more
than one meets the applicability conditions, the robot
asks the user to select between the recipes (Fig. 5).

3. When the merging process leads to the creation of
a new task, the robot asks the user to specify the
name for the task (e.g., the name Rotate in Fig. 6
is specified by the user).

4. If the user does not specify the input of an action
during execution (e.g., the human tells the robot to
perform Unscrew task without specifying an input),
the robot asks for the value of the missing input.

5. In tasks with repeated steps, the robot automatically
infers the repeated behavior and queries the user to
confirm whether the currently repeated pattern should
be generalized to other inputs. Many manufacturing
and maintenance tasks include repeated steps which
are performed on the same types of objects (e.g., in
tire rotation task, robot performs the RemoveTire
task on all four tires). Instead of requiring the human
to demonstrate all of the steps of the task, the robot
asks whether the same action should be applied to
other inputs of a matching type (e.g., other tires).
This form of generalization greatly reduces the bur-
den on the teacher, and the question ensures that
over-generalization does not accidentally occur. An
example of this type of interaction is shown in Fig. 4.

Together, these questions result in a fluid, mixed-
initiative interaction during the learning and execution



Fig. 6: Example of applying the merge algorithm to RotateTires task (For simplicity, temporal constraints’ arrows
are not shown.)

Fig. 7: An example for the execution of the MERGE function in Algorithm 1 is shown in column 1. Column 2
shows the changed HTN after each iteration in column 1 (In column 2, the oval with dashed lines attached to it
shows alternative recipes for that specific task and gray boxes show optional steps.).



process. In future work, we will study the relative
tradeoffs of presenting each type of question to the user.

V. EVALUATION

We evaluated our complete system in a preliminary pi-
lot study using the Gazebo simulation of the car mainte-
nance domain. Specifically, the robot was taught the tire
rotation task presented in Figure 3, which consists of first
removing the tires by uncrewing and unhanging the hubs,
then rotating the tires in one of two patterns, hanging the
tires and then screwing them on. Tire rotation was chosen
because the task is relatively simple, requiring only six
unique primitive actions (PickUp, PutDown, Hang,
Unhang, Screw, Unscrew), but highlights the benefits
of using the HTN representation, including alternative
recipes, hierarchy and inputs/outputs.

The results of this study shows that using the meth-
ods described in this paper, we are able to teach the
complete task structure in 26 demonstration steps. The
interaction between the user and the robot includes 7
user demonstrations, 4 user instructions and 11 robot
questions. The final task model is equivalent to the HTN
shown in Figure 3.

Importantly, we note that the complete execution of
the tire rotation task requires 64 steps. Thus, remarkably,
we are able to teach not only one, but two, ways of
performing this task (i.e., both variants of Rotate) in
fewer steps than it takes to perform the task once all the
way through.

VI. CONCLUSION

In this paper, we presented an approach that integrates
HTNs and collaborative discourse theory into learning
from demonstration paradigm to enable robots to learn
complex procedural tasks from human users through
mixed-initiative interaction. Our work contributes novel
techniques for learning a generalizable task represen-
tation from a small number of demonstration, general-
ization across multiple demonstrations through merging,
and integration of question asking into the learning
process. We evaluated our approach in a pilot study
using simulated robotic environment. Our future work
will include user study evaluation, as well as extension
to real-world domains using the PR2 robot.

ACKNOWLEDGEMENT

This work is supported in part by ONR contract
N00014-13-1-0735. The opinions expressed in this doc-
ument are those of the author(s) and do not necessarily
reflect the views of the Office of Naval Research.

REFERENCES

[1] Brenna D Argall, Sonia Chernova, Manuela Veloso,
and Brett Browning. A survey of robot learning
from demonstration. Robotics and Autonomous
Systems, 57(5):469–483, 2009.

[2] Maya Cakmak and Andrea L Thomaz. Design-
ing robot learners that ask good questions. In
ACM/IEEE International Conference on Human-
Robot Interaction, pages 17–24. ACM, 2012.

[3] Sonia Chernova and Manuela Veloso. Interactive
policy learning through confidence-based auton-
omy. Journal of Artificial Intelligence Research,
34(1):1, 2009.

[4] Andrew Garland, Kathy Ryall, and Charles Rich.
Learning hierarchical task models by defining and
refining examples. In International Conference on
Knowledge Capture, pages 44–51, 2001.

[5] Barbara J. Grosz and Candace L. Sidner. Attention,
intentions, and the structure of discourse. Comput.
Linguist., 12(3):175–204, July 1986.

[6] Scott B. Huffman and John E. Laird. Flexibly in-
structable agents. Journal of Artificial Intelligence
Research, 3:271–324, 1995.

[7] Shiwali Mohan and John E Laird. Towards situ-
ated, interactive, instructable agents in a cognitive
architecture. In AAAI Fall Symposium Series, 2011.

[8] Anahita Mohseni-Kabir, Charles Rich, and Sonia
Chernova. Learning partial ordering constraints
from a single demonstration. In ACM/IEEE Inter-
national Conference on Human-robot interaction,
pages 248–249, 2014.

[9] Monica N Nicolescu and Maja J Mataric. Natural
methods for robot task learning: Instructive demon-
strations, generalization and practice. In AAMAS,
pages 241–248, 2003.

[10] Scott Niekum, Sarah Osentoski, George Konidaris,
and Andrew G Barto. Learning and generalization
of complex tasks from unstructured demonstrations.
In IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, pages 5239–5246, 2012.

[11] Charles Rich. Building task-based user interfaces
with ANSI/CEA-2018. IEEE Computer, 42(8):20–
27, 2009.

[12] Charles Rich, Candace L Sidner, and Neal Lesh.
Collagen: applying collaborative discourse theory
to human-computer interaction. AI Magazine, 22
(4):15, 2001.

[13] Paul E Rybski, Kevin Yoon, Jeremy Stolarz, and
Manuela M Veloso. Interactive robot task training
through dialog and demonstration. In ACM/IEEE
Int. Conf. on Human-Robot Interaction, pages 49–
56, 2007.

[14] Harini Veeraraghavan and Manuela Veloso. Learn-
ing task specific plans through sound and visu-
ally interpretable demonstrations. In IEEE/RSJ
International Conference on Intelligent Robots and
Systems, pages 2599–2604, 2008.


	Introduction
	Related Work
	Collaborative Discourse Theory
	Learning from Demonstration

	System Overview
	Learning Subsystem
	Task Structure Learning Module
	Generating the Task Hierarchy
	Associating Inputs/Outputs
	Learning the Temporal Constraints

	Generalization Module
	Input Generalization
	Merging

	Question Asking Module

	Evaluation
	Conclusion

