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Abstract

We present a system that integrates robot task execution
with user input and feedback at multiple abstraction lev-
els in order to achieve greater adaptability in new en-
vironments. The user can specify a hierarchical task,
with the system interactively proposing logical action
groupings within the task. During execution, if tasks fail
because objects specified in the initial task description
are not found in the environment, the robot proposes
substitutions autonomously in order to repair the plan
and resume execution. The user can assist the robot by
reviewing substitutions. Finally, the user can train the
robot to recognize and manipulate novel objects, either
during training or during execution. In addition to this
single-user scenario, we propose extensions that lever-
age crowdsourced input to reduce the need for direct
user feedback.

Introduction

Current learning from demonstration (LfD) work focuses
on human demonstrators teaching new behaviors to robots.
The end goal of this work is to have the robot replicate the
demonstrated behavior reliably in as general a manner as
possible. Building on this premise of human-demonstrated
ground truth, we present a framework proposal that is aimed
at leveraging human input to extend the applicability of the
tasks a robot is capable of performing into novel environ-
ments. Our approach mitigates one of the central drawbacks
of executing learned behaviors: if sufficient conditions of the
environment in which the task was originally demonstrated
change, the task execution will fail. Our proposal allows for
incremental adjustments to the task to take place by allowing
the user to define both global high-level goals as well as tar-
geted corrections when exceptions occur during execution.
We describe a system that allows a non-expert user to de-
fine, monitor, and execute adaptive robot tasks in new en-
vironments. We focus this system on pick-and-place tasks
for a mobile manipulator. Motivating examples of such tasks
include making a fruit basket and packing a school bag, in
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Figure 1: Block diagram for the single user system.

which a robot must gather a set of household objects (fruit
and office supplies, respectively) distributed around its en-
vironment and place them in a specific location (a basket or
a school bag). We also include a table wiping task to show
that the system extends to non-pick-and-place tasks such as
cleaning a surface.

In its minimal implementation, our system is designed to
allow a single user to provide a feasible amount of training
to first define and then, should the need arise, help adapt a
task through feedback and goal demonstration. The process,
represented in Figure 1, begins with the user teaching a new
task symbolically by combining a predefined set of primi-
tive tasks. Whenever the user teaches a new tasks that uses
objects novel to the robot, the user can also train the robot
to recognize and grasp the object. The result of the train-
ing process is a hierarchical task network (HTN) that uses
primitive tasks such as get(object), place(object, object), and
wipe(surface). The robot then attempts to execute this task
and, during execution, the system can mitigate two types of
failures: symbolic and execution.

Symbolic failures occur when objects in the task descrip-
tion are missing from the physical environment. Should such
errors occur, the robot automatically proposes replacement
objects that allow execution to continue. The user has the
option of validating these substitutions per task, with two op-
tions for rejection (pragmatic and preferential) in addition to
acceptance. Performing substitutions at the symbolic plan-
ning level has the advantage of allowing propositions that
the robot has not yet observed (e.g. objects in another room



or hidden from view), as well as allowing object proposi-
tions for which the robot does not yet have an object model
trained. In this way, the user only has to demonstrate primi-
tive task execution for approved substitutions.

Execution failures occur if the user accepts a substitution
for which the robot has no model, or if a model has insuffi-
cient data to successfully manipulate that object, in that the
robot does not know how to successfully execute a primi-
tive task. In this case, the robot will request demonstrations
from the user, which are used to construct and refine object
models for both recognition and manipulation.

In the last part of the paper, we propose how our learning
system can be framed as a cloud robotics framework and
discuss the potential advantages of aggregating data across
a large group of users.

Background and Related Work

Our method allows for the user to interactively teach a new
task as an HTN using primitive actions. HTNs are widely
used in artificial intelligence, especially in planning systems
and in interactive agents (Nejati, Langley, and Konik 2006;
Hinrichs and Forbus 2012). In the context of human-robot
interaction, and LfD specifically, HTNs have two key ad-
vantages, as compared to flat representations. Both of these
advantages flow from the fact that humans naturally tend to
think about complex tasks hierarchically.

An HTN is a tree in which the fringe nodes denote prim-
itive tasks, i.e., tasks that can be directly executed by the
robot, and the other nodes denote abstract tasks. The ab-
stract tasks, although not absolutely necessary (you could
imagine representing any procedure as a sequence of prim-
itives), provide a vocabulary for communication between
the human and robot. This is an advantage for discussing
the partial completion status of the procedure, for delegat-
ing subtasks, for discussing potential problems with execu-
tion, and more. Second, the abstract tasks can be reused in
other situations. Previous work (Mohseni-Kabir et al. 2015)
focuses on more complex tasks, such as tire rotation, and
shows the advantages of using HTNs instead of a flat repre-
sentation in a user study with 32 participants and a simulated
robot. Current work on HTNs does not account for situations
in which objects originally required are missing from the en-
vironment. Although the new object input propagates down
the tree should the user specify new objects, currently there
is no method to recover from execution failures due to miss-
ing objects; execution halts and the missing objects must be
provided.

The first goal of our work is to learn the task descrip-
tion from the user. To achieve this goal, there is exten-
sive research (involving both robots and virtual agents) on
learning from demonstration (Argall et al. 2009), hierarchi-
cal task learning: (Garland, Ryall, and Rich 2001; Nico-
lescu and Mataric 2003; Veeraraghavan and Veloso 2008;
Hayes 2013; Rybski et al. 2007), interactive task learning:
(Cakmak and Thomaz 2012; Chernova and Veloso 2009;
Hayes and Scassellati 2014) and learning from a single
task iteration: (Huffman and Laird 1995; Mohan and Laird
2011). We used previous work on combining all these as-

pects to allow a user to teach new tasks (Mohseni-Kabir et
al. 2015).

We suggest object substitutions using bag-of-words con-
texts derived from the HTN in conjunction with semantic
networks. Initially used in information retrieval (Croft, Met-
zler, and Strohman 2010), bag-of-words models have been
used in physical-world domains such as computer vision
(Bolovinou, Pratikakis, and Perantonis 2013) and robot lo-
calization (Nicosevici and Garcia 2012). A semantic net-
work represents concepts as vertices of a graph and relations
between these concepts as edges. In this work, we used two
such resources to derive concept similarity: WordNet and
ConceptNet. WordNet represents word senses by associating
concepts with synsets — different senses of a word belong
to different synsets. It provides a concept similarity measure
as the normalized path distance (Pedersen, Patwardhan, and
Michelizzi 2004). On the other hand, ConceptNet aggregates
data from a variety of sources, including WordNet, DBPedia,
and crowd-contributed information (Liu and Singh 2004). It
covers a broader spectrum words, and represents a total of
48 relations such as part-of, is-a, used-for, has-property. Be-
cause it aggregates information, ConceptNet contains some
noise in both the nodes (e.g. different spellings) and the
edges (e.g. incorrect edges). Using the ConceptNet graph,
Divisi is a measure of word similarity which uses its singu-
lar value decomposition (Speer, Arnold, and Havasi 2010).
In addition to these similarity measures, we use the Seman-
tic Similarity Engine (SSE) to evaluate relational similarity
(Boteanu and Chernova 2015). SSE computes the most sim-
ilar path pair between two pairs of words using ConceptNet,
producing a numerical normalized value, as well as a hu-
man readable justification. SSE targets proportional analo-
gies, which are commonly phrased as A is to B as C is to
D. For object substitution, we can leverage this type of anal-
ogy to attempt to establish relational parallelism between a
target and a candidate with respect to a context element, by
forming the analogy target:context word.::candidate:context
word.

For a robot to interact with potentially novel objects
provided as substitutions, we turn again to learning from
demonstration. Of particular interest is goal-based learning
(Chung et al. 2014; Kent and Chernova 2014; Toris, Kent,
and Chernova 2015), where demonstrations provide task
goals rather than the actions required to complete them. This
provides more adaptability during execution in that it allows
the robot’s planners and controllers to determine how best to
execute a task according to its present environment. Demon-
strations themselves can be provided by a variety of meth-
ods, including teleoperation of the robot by joystick, mouse,
or keyboard, and kinesthetic teaching, in which a user phys-
ically moves the robot (Argall et al. 2009). Finally, inte-
grating crowdsourcing with robotics applications can pro-
vide large amounts of varied feedback and demonstration
data while reducing the amount a single user needs to give
(Kehoe et al. 2015). It has been used in robotics applica-
tions extensively, including the aforementioned goal-based
learning, interface testing (Crick et al. 2011), learning nat-
ural language commands (Tellex et al. 2011), and learning
human-robot interaction behaviors (Breazeal et al. 2013).



Based on our research, there is no previous work that has
integrated all of these components into a single system, in-
cluding task learning, object substitution, and recognition
and grasp learning. This work aims to integrate the most use-
ful aspects of the above work into an end-to-end system for
adaptable robot task execution in new environments.

Single User System

In this section, we present the full single user system, shown
in Figure 1. The system has four major components, with
varying levels of user interaction: task description, task ex-
ecution, object model construction, and object substitution.
Each component is described in more detail later in this sec-
tion, but the general flow is as follows. The workflow of us-
ing the system is shown in Figure 2. The user first teaches a
task, represented as a hierarchical task network stored in the
task description component. For any primitive tasks speci-
fied in the task description which the robot does not already
know how to complete, for example if a user adds get on a
novel object, the rask description component requests a new
model be added by the object model construction compo-
nent, which in turn asks the user for demonstrations of the
new primitive task.

Once the task has been learned, the task description com-
ponent executes it by sending a sequence of primitive tasks
to the robot’s execution system, represented by the fask ex-
ecution component. The task execution component reports
any failure to complete a primitive task back to the fask de-
scription component, which in turn requests a substitution
from the object substitution component. Upon finding a suit-
able substitution, the object substitution component repairs
the plan with the new object. If the repaired plan contains
primitive tasks that are new to the robot, task description
again requests the object model construction component to
add any new object models required by the new primitive
tasks. Finally, the task description component sends a new
primitive task from the repaired plan to task execution. Ex-
ecution will continue in this manner until the task is suc-
cessfully completed. The task execution component can also
request refinements to existing object models if they are not
providing sufficient data for manipulation, in which case the
user will be asked to provide further demonstrations.

To illustrate the single user scenario, we implemented the
task of making a fruit basket on a mobile robot manipulator.
We use this task as the primary example for the single user
scenario because it provides a both simple and typical case to
demonstrate our approach. We represent the task as an HTN
in which retrieving a piece of fruit is a repeatable learned
subtask, which is applied to successively. During execution,
object substitutions occur when one of the required fruit is
not available. The video included ! with this paper shows the
user teaching the task, followed by the robot autonomously
executing it. The robot prompts the user for feedback when a
substitution requires attention and for demonstrations when
it encounters a get task on a novel object.

"https://www.youtube.com/watch?v=Ry3QtbSoOfM
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Figure 4: Graphical user interface for teaching a task.

Task Description

First, we focus on the problem of how a robot can effi-
ciently learn a hierarchical task model from a human teacher
who is an expert in the domain, but not in robot program-
ming. Our approach integrates learning from demonstration
with hierarchical task networks, and our approach consists
of viewing LfD as a collaborative discourse. In a collabora-
tive discourse, both participants, the human teacher and the
robot learner, are committed to the shared goal of the in-
teraction (in this case, for the robot to learn a new task) and
both actively contribute towards achieving that goal. Collab-
orative discourse theory (Grosz and Sidner 1986) provides
a foundation for both the algorithms and the implementa-
tion of our system. We are using an open-source tool, called
Disco (Rich and Sidner 2012), based on collaborative dis-
course theory in our implementation. We focus on learning
from a single demonstration. This is possible because of the
bi-directional communication between the teacher and the
learner. For more details, please refer to (Mohseni-Kabir et
al. 2015).

We show an example HTN for making a fruit basket in
Figure 3. The fruit basket HTN uses two primitive task
types: Get, and Place, with their respective input and output
types shown. For example Get takes an object as input and
returns the object as output. The fruit basket task has only a
single abstract task, Store, which decomposes into Get and
Place primitives with a temporal constraint between them.
We have used data flow in HTNs to learn temporal con-
straints from a single demonstration. Our method for learn-
ing temporal constraints is discussed in details in (Mohseni-
Kabir, Rich, and Chernova 2014).
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Figure 2: System flow diagram.

Figure 5 illustrates an example scenario of the interaction
between a user and the task description component which
learns the HTN of the fruit basket task depicted in Figure 3.
The user starts by teaching a new abstract task called Fruit-
Basket, adding its two primitive subtasks: Get (applied to the
apple) and Place (applied to the apple and the basket). Then,
in lines 8—12, the robot suggests the user to group the Get
and Place tasks, and the user accepts the suggestion, leading
to the creation of a new abstract task type called Store. Con-
tinuing in lines 15-19, the user similarly applies this new
abstract task, Store, to the other three fruits. The interac-
tion is ended by the user in lines 20-23. Other prior work
(Mohseni-Kabir et al. 2015) discusses the algorithms devel-
oped for generating grouping and repetition suggestions and
shows that these suggestions significantly assist the users in
building HTNG.

Figure 4 shows a partial view of the graphical user in-
terface we have developed for our preliminary experiments.
This user interface has the same functionality as the illus-
trated scenario in Figure 5. The left side of the GUI (omit-
ted from figure) contains buttons that select a primitive or
abstract task to execute or add to the definition of a new ab-
stract task. The primitive task types are fixed. New abstract
task buttons are added whenever a new abstract task type is
learned. The top middle area of the GUI is mainly for spec-
ifying inputs, if any, as needed before executing/adding a
task. Each input can be selected from a drop-down list of ob-
jects in the environment of the correct type. When the user
presses the Execute button, the robot adds or executes the
selected primitive or abstract task. Please note that we dis-

tinguish between executing and adding the selected task but
we use the same Execute button for both cases. If the user
is in the middle of teaching a new abstract task, pressing the
Execute button will just add the selected task to the defini-
tion of the abstract task; however if the user has not started
teaching a new abstract task, pressing the Execute button re-
sults in the robot immediately performing the selected task.
The middle area of the GUI below the input selection area
is the main informational display, which shows the current
hierarchical structure of the learned tasks.

Finally, the right side of the GUI contains a “chat” win-
dow in which the robot can ask the user questions and the
user can reply. This is where the robots helpful suggestions
appear and where the user can accept or reject them. Based
on the lessons learned in our prior work (Mohseni-Kabir et
al. 2015), the robot engages more actively with the user in
the interactions presented here; in addition to giving repe-
tition and grouping suggestions, the robot also gives more
feedback on the completion of the tasks, the definition of
already known tasks, and the state of the execution.

Object Model Construction

The primitive tasks defined in the task description compo-
nent may or may not be known by the robot. In the event
that a primitive task unknown to the robot is added, either
while the user is initially teaching the task or by the object
substitution component’s plan repair (see the Object Substi-
tution section below), the object model construction compo-
nent will request demonstrations of the new primitive task.
In the pick-and-place domain, if the robot must pick up an
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Figure 3: An example hierarchical task network for making a fruit basket.

User: “Teach a new task.”

Robot: What is the name of this new task?

User: “Fruit basket.”

Robot: What is the first step of fruit basket task?

User: “Execute Get on the apple.”

Robot: Ok. What’s next?

User: “Execute Place on the apple and the basket.”

Robot: Ok. Do you want to group Get and Place into a new subtask?”’
User: “Yes.”

Robot: What should I call this new task?

User: “Store.”

Robot: I learned the definition of store task. What should I do next?
User: “Execute store on the orange and the basket.”

Robot: Ok. What’s next?

User: “I'm done teaching the fruit basket task.”

Robot: I learned the definition of fruit basket task. Are you going to teach me another
task?

User: “No.”

Figure 5: A typical interaction example teaching the fruit
basket task.

object that it does not have an object model for, it requests
that the user provide a set of grasp demonstrations for that
object.

Depending on the capabilities of the robot, one of two
demonstration approaches can be used. The first is a web
interface designed for non-expert users, shown in Figure 6.
The interface is implemented using the Robot Management
System?, and can be run on any computer, tablet, or mo-
bile device with a web browser. Using a mouse or touch-
screen, the user can teleoperate the robot’s end effector via
interactive markers provided in the left half of the interface.
Once the end effector is in an appropriate pose for grasping,
the user can save the demonstration, storing the segmented
point cloud of the grasped object, the object name, and the
end effector pose. Alternatively, if the robot has a compli-
ant arm, the user can perform demonstrations through kines-
thetic teaching by physically moving the end effector into

Documentation and source code are available at
http://www.ros.org/wiki/rms

®@WPI

Figure 6: Grasp demonstration interface. The left window
provides interactive marker control of the robot’s end effec-
tor position and orientation, the right window shows a cam-
era feed from the robot, the set of buttons in the bottom left
allows the user to save new demonstrations, and the bottom
right text box provides feedback from the robot.

a grasp pose. This eliminates the need for an interface and
provides a natural method of collecting grasp data.

The data collected from the demonstrations provide in-
put to the object model generation algorithm. Models are
generated using a graph-based point cloud registration al-
gorithm, which iteratively selects and merges pairs of point
clouds based on their pairwise registration score. The regis-
tration algorithm also transforms the associated grasp poses
stored during the demonstration process, resulting in 3D ob-
ject models suitable for recognizing and grasping previously
unknown objects. The object model generation algorithm is
described in more detail in (Kent, Behrooz, and Chernova
2014) and (Kent and Chernova 2014).

Task Execution

The task execution component of the system contains all of
the necessary robot controllers to execute the primitive tasks
sent by the trask description component. While executing
primitive tasks is often straightforward, this component also



makes use of user feedback to recover from both encoun-
tering a new type of primitive task (e.g. picking up a novel
object) and general execution failure of a primitive task.

Similar to adding new object models, the robot can inter-
rupt task execution by using the object model construction
component’s demonstration system to recover from failed
executions of a known primitive task. For example, if the
robot repeatedly fails to pick up an object for which it al-
ready has a trained object model, it can request that the ob-
Jject model construction component gather additional grasp
demonstrations from the user. These new grasp demonstra-
tions along with the previously generated model can then
be used as input to the object model generation algorithm,
resulting in a refined object model.

Object Substitution

Humans are able to improvise and adapt to unforeseen
changes in their environment when carrying out a task, for
example using different tools for the same purpose. Robots
executing tasks, however, lack sufficient flexibility to im-
provise. The field of plan repair addresses the problem of
changing an existing plan locally such that execution can
resume should a halting problem be encountered (Gerevini
and Serina 2000; Van Der Krogt and De Weerdt 2005;
Fox et al. 2006; Koenig and Likhachev 2002). However,
repairing plans assumes that the domain is unchanged. In
addition to allowing execution in entirely different environ-
ments, such as cross-user execution, adapting existing plans
can compensate for less drastic changes such as unusable
(e.g. dirty dishes) or lost items when executing tasks in the
same environment.

We present object substitution as an extension to plan
repair, which allows for the domain to be extended to in-
clude new objects. This is necessary if a task is executed
in a new environment, or if the objects in the environment
changed from those used to teach the task. Assuming that
the robot cannot find an object specified in the task (target),
our method leverages semantic similarity as derived from
general purpose semantic networks to propose and evalu-
ate alternatives (candidates). Since the robot may have par-
tial knowledge of the objects present in the environment, the
substitution is performed at a symbolic level.

Our method consists of three steps: generating candidates
for the target, extracting context from the HTN, and eval-
vating the fitness of each candidate within said context.
We generate candidates by selecting words that are con-
nected through similar affordance-like edges in Concept-
Net. The edges we focus on are Used-For, Has-Property and
Capable-Of. For example the concepts apple and pear are
both linked to good fo eat by Has-Property edges, while ap-
ple and cookie are linked to edible via the same edge type.
For the context, we parse and lemmatize all node and in-
put tags from the HTN, for example the task label GetApple
produces the words get, apple, and the location input name
Object:Basket produces basket.

Using semantic networks, we evaluate substitution using
a number of measures: ConceptNet Divisi similarity, Word-
Net path length similarity and SSE analogical similarity. We
model substitutions using two criteria: (1) the similarity be-

tween a candidate and the target (using Divisi and Word-
Net path similarity); (2) the similarity between each con-
text word are the target and the candidate (using, in addition
to Divisi and WordNet path similarity, the SSE similarity
score).

To evaluate our model we conducted a supervised classi-
fication experiment in which we constructed a model using
the similarity metrics described above, with the substitution
annotation as the class attribute. We generated candidates
for the fruit basket, wipe table and pack schoolbag tasks.
We annotated these candidates as either suitable or unsuit-
able substitutions using two experts. The final annotation
was reached by consensus or through discussion.

We next constructed a dataset from the metrics and an-
notations. Each instance in the dataset contained the aver-
age similarity metric values per context and the substitution
quality annotation; we removed all word-related information
such as the task, target, or candidate. We trained a random
forest classifier using ten-fold cross validation®. The clas-
sifier achieved a performance of 98.93%. Of substitutions
selected as valid by the classifier, 88.73% were correct; we

computed this percentage using the following formula:

valid substitutions %100
valid substitutions + false positives + false negatives :

Once a model has been trained for predicting substitu-
tions, it can be used in future task executions. Since there
is a chance of erroneous substitutions, we propose prompt-
ing the user when either new substitutions or low-confidence
substitutions are attempted for each task. Our framework ac-
commodates three user responses:

e Acceptance: the user accepts the substitution and the sys-
tem continues execution;

e Pragmatic Rejection: the user rejects the substitution cit-
ing objective reasons;

e Preferential Rejection: the user rejects the substitution
in order to express a personal preference. In this case,
although the substitution is possible from a pragmatic
standpoint, the user does not allow it due to personal pref-
erence.

We divide rejection into two categories because pragmatic
rejection generalizes across users, and preferential rejection
should be used for only a single user. As the system gains
feedback on each (task, target, candidate) substitution pro-
posal, it can learn a confidence value for both the general
case as well as for personalizing substitutions to user pref-
erence. This behavior leaves the feedback open for use in
a multi-user environment (see the Cloud Robotics Frame-
work section). Using feedback in conjunction with the SSE-
derived explanations, we project the potential of the system
deriving substitution fitness based on edge information in
addition to the similarity metrics.

Cloud Robotics Framework
In the above section we described a scenario in which only
a single user contributes tasks, feedback, and demonstra-

3The classification model was obtained using Weka 3.7.12, with
the default configuration parameters



tions. Now we propose a number of incremental learning ap-
proaches that will allow the robot to expand its knowledge
by leveraging input from a large group of separate users,
while also reducing the burden placed on the single user to
provide feedback and demonstrations. For this scenario, we
expand the system design by adding a database to which the
crowd can contribute. We use crowdsourced input to improve
substitution feedback and expand the set of object models
for recognition and manipulation.

Requesting demonstrations for new objects can be time
consuming for a single user, particularly if many object
models are missing. The object model construction algo-
rithm is designed to work with unordered demonstrations,
thus allowing models to be constructed from data collected
from multiple users. Data collection is easily extended to the
crowdsourcing domain as well. Since it’s implemented in the
Robot Management System, the grasp demonstration inter-
face (Figure 6) can allow connections from remote online
users, allowing anyone to provide grasp demonstrations for
the robot. The interface also includes elements to promote
situational awareness for remote users, such as the camera
feed, the feedback window, and the task instructions. This
allows the crowd to contribute to a large database of grasp
demonstrations, which is then used to inform object model
creation.

The single user may still provide grasp demonstrations
and refinements to supplement the crowdsourced data, both
for online error recovery and if they have personal pref-
erences for how their objects are manipulated. By crowd-
sourcing model construction for a known set of objects in an
environment before the robot attempts any task execution,
though, the amount of online training required from the user
can be significantly reduced.

In the case of object substitution, the crowd can contribute
pragmatic quality judgments that evaluate a specific substi-
tution for a specific task, providing judgements for (zask,
target, candidate) tuples. As in the case of a single-user sce-
nario, the system can build confidence towards a decision as
the number of judgments increases. To evaluate how suitable
the crowd’s responses are for this purpose, we conducted a
survey* on the substitution candidate set we used in Object
Substitution section. The survey consisted of a brief descrip-
tion of the general setting, the task name with no other de-
tails about the task, the target object name, and the substi-
tution name. There was an agreement of 80% between the
crowd and the expert annotations. This shows that the crowd
is a reasonable source of substitution annotations, even with
minimal information about the task. We note that this predic-
tion power is comparable to our substitution system’s classi-
fication performance. By using substitution evaluations de-
rived both algorithmically and from the crowd, we are able
to limit the need for direct user feedback only to edge cases
and for personalization.

“The survey was conducted on the Crowdflower platform
(www.crowdflower.com) using a minimum of five respondents
per candidate. Questions were available to only participants from
English-speaking countries.

Conclusion

We described a system which allows a non-expert user to
specify and refine robot tasks in an abstract-to-concrete
manner. Starting from the global task definition, the robot
requests feedback as needed, reducing the initial and global
amount of training data the user has to give. The robot imple-
ments corrective behaviors that dynamically request refine-
ments from the user as needed. First, in defining the initial
task, the system proposes structures that improve the task’s
modularity, which in turn improves the robot’s autonomy.
Second, we mitigate discrepancies between the task defini-
tion and the environment by allowing the robot to propose
object substitutions in order to adapt the plan as needed.
Third, the robot requests demonstrations if the tasks require
the manipulation of objects for which no models exist, or if
the existing models need refinement. The complete system
maintains adaptability in task performance for new environ-
ments, while requesting user feedback and demonstrations
only when necessary. Additionally, we further minimize the
amount of user input required by expanding the single-user
scenario with a series of improvements that leverage input
from the crowd.
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