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Abstract

We summarize our past, present and future research re-
lated to human-robot dialogue, starting with its foun-
dations in collaborative discourse theory, continuing to
our current research on recognizing and generating en-
gagement, and concluding with an outline of new work
we are beginning on the modeling of long-term relation-
ships between humans and robots.

This paper is a summary of our past, present and future re-
search related to human-robot dialogue. In the first section
below, we describe the main elements of collaborative dis-
course theory and the architecture of a collaborative inter-
action manager, which serve as the foundation of all of our
later work. In the second section, we discuss current work
on engagement, which underlies and supports collaboration
and dialogue. Finally, in the third section, we outline new
research we are beginning, which focuses on robots (and
other agents) that are “always on” and therefore need to
build long-term relationships with humans in their environ-
ment. More details on each of these topics can be obtained
by referring to the cited publications.

Collaborative Discourse
The common thread through almost all of our research for
the past many years has been the view that, whenever there is
interaction—and especially communication—between two
intelligent agents, collaborative discourse theory provides
important insights into what is going on and helpful guid-
ance in designing computer tools to support the interaction.
Human-robot dialogue is the most recent example of where
we have applied this approach.

Collaboration is a process in which two or more partici-
pants coordinate their actions toward achieving shared goals.
Most collaboration between humans involves communica-
tion. Discourse is a technical term for an extended commu-
nication between two or more participants in a shared con-
text, such as a collaboration. Collaborative discourse the-
ory thus refers to a body of empirical and computational re-
search about how people communicate in the context of a
collaboration.
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SharedPlans
Grosz and Sidner’s SharedPlans (Grosz and Sidner 1986;
1990; Grosz and Kraus 1996) provide a general compu-
tational model of how collaborative, coordinated activity
emerges from the individual beliefs and intentions (goals
and plans) of the collaborators. Two collaborators have a
SharedPlan for a given goal when they mutually believe that:
(a) they have a common (shared) goal; (b) they have agreed
on a recipe to accomplish the goal; (c) they are each capable
of performing their respective actions; (d) each intends to
perform their respective actions; and (e) they are both com-
mitted to the overall success of the collaboration.

In a typical collaboration, not all of the five conditions
above are satisfied at the start. Instead, SharedPlans typi-
cally start in a partial state, e.g., having a shared goal, and
incremental refinement of the SharedPlan is interleaved with
performing actions that contribute toward the goal. Along
the way, much of the communication between the collabo-
rators often has to do with refining the SharedPlan, such as
negotiating who should do which action.

Collaborative Interaction Manager
We have implemented two collaborative interaction man-
agers based on SharedPlans, Collagen (Rich and Sidner
1998; Rich, Sidner, and Lesh 2001) and its recent succes-
sor, Disco. Collagen has been used to build more than
a dozen human-computer collaborative systems. Unlike
most so-called “dialogue managers,” Collagen and Disco
manage both the conversational and the task structure of
an interaction. This is because, according to SharedPlan
theory, these two structures are deeply intertwined. Both
Collagen and Disco currently support only two-participant
discourse (dialogue), although we have experimented with
multi-participant extensions to both of them.

Disco differs from Collagen mainly in using the
ANSI/CEA-2018 standard, whose development was led by
Rich (2009), for representing task models. Disco also lacks
the logical inference and truth maintenance facilities in-
cluded in Collagen. Disco is written in Java and is dis-
tributed under the MIT open-source license; a copy may be
obtained by sending email to Rich.

Figure 1 shows the architecture of both Collagen and
Disco. The two key data structures in this architecture are
the task model and the discourse state. The task model is
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Figure 1: Architecture of Collaborative Interaction Manager

an abstract, hierarchical, partially ordered representation of
the actions typically performed to achieve goals in the ap-
plication domain. The discourse state contains instances of
classes/types defined in the task model. The two key algo-
rithms, discourse interpretation and generation, are essen-
tially application-independent (small procedural extensions
can be provided to support application-specific heuristics).

Engagement
Engagement is the process by which two (or more) partic-
ipants establish, maintain and end their perceived connec-
tion during interactions they jointly undertake (Sidner et al.
2005). To elaborate,

...when people talk, they maintain conscientious psychologi-
cal connection with each other and each will not let the other
person go. When one is finished speaking, there is an accept-
able pause and then the other must return something. We have
this set of unspoken rules that we all know unconsciously but
we all use in every interaction. If there is an unacceptable
pause, an unacceptable gaze into space, an unacceptable ges-
ture, the cooperating person will change strategy and try to re-
establish contact. Machines do none of the above, and it will
be a whole research area when people get around to working
on it. (Biermann, invited talk at User Modeling Conference,
1999)

Nonverbal behaviors, i.e., movements (gestures) of the
head, eyes, limbs and body, such as looking, nodding, point-
ing and stance, are thus an essential part of the engagement
process. In our work to date, we have concentrated on un-
derstanding how looking, pointing and head nods and shakes
contribute to maintaining engagement.

The relationship between engagement and collaboration
is illustrated in Figure 2. Generally speaking, engagement is
a “lower level” process; it is closer to the “hardware” and has

Figure 2: Engagement and Collaboration

shorter real-time constraints. Collaboration is a higher level
cognitive function, with a correspondingly slower real-time
action rate. In general, engagement supports collaboration.
For example, a collaborator relies on the engagement state
to know when it is appropriate to continue with the collabo-
ration.

However, engagment and collaboration are not strictly
layered. The state of the collaboration can also affect
how engagement behaviors are interpreted. For example,
whether or not to interpret breaking eye contact (looking
away) as an attempt at disengagement depends on whether
the next action in the collaboration requires looking at a
shared artifact—if it does, then looking away does not signal
disengagement.

We believe that engagement is a fundamental process that
underlies all human interaction and has common features
across a very wide range of interaction circumstances. At
least for humanoid robots, this implies that modeling en-
gagement is crucial for constructing robots that can inter-
act effectively with humans without special training. The
main goal of our current research is therefore to develop
a Robot Operating System (ROS) engagement module that
can be reused across different robots and applications. ROS
(see ros.org) is an open-source multi-platform robotics soft-
ware framework, whose goal is to increase code reuse in the
robotics research and development community.

Connection Events

Our most recent theoretical contribution in the area of en-
gagement has been to identify and codify, based on our own
(Rich et al. 2010) and others’ studies of human behavior,
four types of what we call connection events, i.e., events in-
volving gesture and speech that contribute to the perceived
connection between humans: directed gaze, mutual facial
gaze, conversational adjacency pairs and backchannels (see
Figure 3). Our hypothesis is that these events, occuring at
some minimum frequency, are the process mechanism for
maintaining engagement.

Figures Figure 4(a) through (d) show time lines for these
four types of connection events. In the discussion below,
we describe the observeable behaviorial components of each
event type and hypothesize regarding the accompanying in-
tentions of the participants. Dotted lines indicate optional
behaviors. Also, note that gesture and speech events often
overlap.

Directed Gaze In directed gaze (Kendon 1967), one per-
son (the initiator) looks and optionally points at some object
or group of objects in the immediate environment, follow-
ing which the other person (the responder) looks at the same
object(s). We hypothesize that the initiator intends to bring
the indicated object(s) to the responder’s attention, i.e., to
make the object(s) more salient in the interaction. This event
is often synchronized with the initiator referring to the ob-
ject(s) in speech, as in “now spread the cream cheese on the
cracker.” By turning his gaze where directed, the responder
intends to be cooperative and thereby signals his desire to
continue the interaction (maintain engagement).



Figure 3: Human Engagement Study
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(b) Mutual Facial Gaze
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Figure 4: Time Lines for Connection Events (numbers for
reference in text)

In more detail (see Figure 4(a)), notice first that the point-
ing behavior (1), if it is present, begins after the initiator
starts to look (2) at the indicated object(s). This is likely
because it is hard to accurately point at something without
looking to see where it is located.1 Furthermore, we ob-
served several different configurations of the hand in point-
ing, such as extended first finger, open hand (palm up or
palm down—see Figure 3), and a circular waving motion
(typically over a group of objects). An interesting topic
for future study (that will contribute to robot generation of
these behaviors) is to determine which of these configura-
tions are individual differences and which serve different
communicative functions.

After some delay, the responder looks at the indicated ob-
ject(s) (4). The initiator usually maintains the pointing (1), if
it is present, at least until the responder starts looking at the
indicated object(s). However, the initiator may stop looking
at the indicated object(s) (2) before the responder starts look-
ing (4), especially when there is pointing. This is often be-
cause the initiator looks at the responder’s face, assumedly
to check whether the responder has directed his gaze yet.
(Such a moment is captured in Figure 3.)

Finally, there may be a period of shared gaze, i.e., a pe-
riod when both the initiator (3) and responder (4) are look-
ing at the same object(s). Shared gaze has been documented
(Brennan 1999) as an important component of human inter-
action.

Mutual Facial Gaze Mutual facial gaze (Argyle and Cook
1976) has a time line (see Figure 4(b)) similar to directed
gaze, but simpler, since it does not involve pointing. The
event starts when the initiator looks at the responder’s face
(5). After a delay, the responder looks at the initiator’s face,
which starts the period of mutual facial gaze (6,7). Notice
that the delay can be zero, which occurs when both parties
simultaneously look at each other.

The intentions underlying mutual facial gaze are less clear
than those for directed gaze. We hypothesize that both the
initiator and responder in mutual facial gaze engage in this
behavior because they intend to maintain the engagement
process. Mutual facial gaze does however have other inter-
action functions. For example, it is typical to establish mu-
tual facial gaze at the end of a speaking turn. Mutual facial
gaze can also be affected by the social relationship between
the parties (Emery 2000).

Finally, what we are calling mutual facial gaze is often
referred to informally as “making eye contact.” This lat-
ter term is a bit misleading since people do not normally
stare continously into each other’s eyes, but rather their gaze
roams around the other person’s face, coming back to the
eyes from time to time.

Adjacency Pair In linguistics, an adjacency pair consists
of two utterances by two speakers, with minimal overlap or

1It is usually possible to creatively imagine an exception to al-
most any rule such as this. For example, if a person is standing
with his back to a mountain range, he might point over his shoul-
der to “the mountains” without turning around to look at them. We
will not bother continuing to point out the possibility of such ex-
ceptions.



gap between them, such that the first utterance provokes the
second utterance. A question-answer pair is a classic exam-
ple of an adjacency pair. We generalize this concept slightly
to include both verbal (utterances) and non-verbal commu-
nication acts. So for example, a nod could be the answer
to a question, instead of a spoken “yes.” Adjacency pairs,
of course, often overlap with the gestural connection events,
directed gaze and mutual facial gaze.

The simple time line for an adjacency pair is shown in Fig-
ure 4(c). First the initiator communicates what is called the
first turn (8). Then there is a delay, which could be zero if the
responder starts talking before the the initiator finishes (9).
Then the responder communicates what is called the sec-
ond turn (9,10). In some conversational circumstances, this
could also be followed by a third turn (11) in which the ini-
tiator, for example, repairs the responder’s misunderstand-
ing of his original communication or comments on what the
responder said.

Backchannel A backchannel is an event (see Figure 4(d))
in which one party (the responder) directs a brief verbal or
gestural communication (13) back to the initiator during the
primary communication (12) from the initiator to the respon-
der. Typical examples of backchannels are nods and/or say-
ing “uh, huh.” Backchannels are typically used to commu-
nicate the responder’s comprehension of the initiator’s com-
munication (or lack thereof, e.g., a quizzical facial expres-
sion) and/or desire for the initiator to continue. Unlike the
other three connection event types, the start of a backchan-
nel event is defined as the start of the responder’s behavior
and this event has no concept of delay.

Engagement Recognition and Generation
Based on the analysis of connection events above, we have
implemented an engagement recognition module (Rich et al.
2010), and are working on an engagement generation mod-
ule for human-robot interaction.

The engagement recognition module is organized as four
parallel finite state machines (recognizers), each of which
recognizes the time line of a given connection event type
(more than one recognizer may be active at a time). The
inputs to these recognizers is information (e.g., from the
robot’s cameras) about where the human is looking and
pointing and when the human nods or shakes his head. The
recognizers also need to know where the robot is looking
and pointing and when it nods or shakes its head (this infor-
mation is available from the robot’s control system).

In addition to providing real-time feedback to the robot on
the successful or unsuccessful completion of specific con-
nection events, the engagement module also computes ongo-
ing statistics on the overall engagement process, such as the
mean time between connection events (MTBCE), which we
hypothesize captures something of what is informally called
the “pace” of an interaction (Dix 1992):

pace ∝
1

MTBCE

In other words, the faster the pace, the less the time between
connection events.

Figure 5: Human-Robot Interaction

The engagement generation module receives communica-
tive intentions from the higher cognitive functions of a robot
and is responsible for implementing them by adding nonver-
bal behaviors, such as looking, pointing, nodding, etc., to
the given verbal material. For example, this component may
decide to initiate a directed gaze toward the peanut butter
jar at the appropriate point in the utterance, “please put the
peanut butter on the round cracker.” We are using the Be-
havior Markup Language (Kopp et al. 2006) as a tool in this
process. The engagement generation module is also respon-
sible for maintaining what might be called the engagment
“heartbeat,” i.e., making sure that there is some kind con-
nection event, such a mutual facial gaze, at some minimum
frequency.

As a preliminary validation of our engagment recognition
model, we developed a simple human-robot demonstration,
which we call the “pointing game” (see Figure 5), that natu-
rally includes the three of the connection event types above
(no backchannels). Several plates of different colors are
place randomly on the table between the human and robot.
The robot starts the game by saying “Please point at a plate.”
The human is then expected to respond by pointing at any
plate. The robot identifies the chosen plate by pointing to
it and saying, for example, “You pointed at the red plate.”
If the human does not respond within a certain amount of
time, the robot asks “Do you want to stop now?” If the hu-
man nods yes, the robot says “Thank you for playing”; if
he shakes no, then the robot repeats its last request. We are
currently working toward on a systematic evaluation of both
the recognition and generation modules, using a more com-
plex interaction involving collaboratively solving a tabletop
tangram puzzle.

Always-On Relational Agents
The new research we are about to embark upon together with
Tim Bickmore at Northeastern University is motivated by
the following question:

What should your robot do when it is not busy obeying
your commands?

With the rapid drive of technology towards placing in-
creasingly capable robots into human home, work and play
environments, it is time to start asking this question. Obvi-
ously the answer depends a lot on what kind of robot we are



talking about. For example, if it’s a turtle-like floor cleaning
robot, it probably should wait silently out of sight until it’s
time to clean the floor. But how about a humanoid household
robot? According to some science fiction visions of the fu-
ture, even such robots should stand silently at attention until
commanded to do something.

Our answer is that a successful robot should spend its time
building and maintaining long-term social relationships with
the humans in its environment. Because humans are deeply
and fundamentally social beings, they cannot help but ex-
pect a continuously present artificial being, especially if hu-
manoid, to become part of their network of relationships.
Furthermore, human-to-non-human social relationships can
have value both in and of themselves, as demonstrated by
the effectiveness of animal pet companions for isolated older
adults (Banks and Banks 2002), and also contribute to the
success of more instrumental interaction goals, as demon-
strated by Bickmore’s research on social dialogue in exer-
cise coaches (Bickmore and Schulman 2009).

Figure 6 summarizes the architecture of the agents we will
be building.

SharedPlans Relationship Theory
You cannot create a relationship in isolation. Relationships
require the active participation and commitment of both (all
of) the participants. As a starting point for the theoretical
foundations of relational agents, we therefore look to the-
ories of collaboration, specifically the SharedPlans theory
discussed above.

All of the applications of SharedPlans thus far have in-
volved what might be called instrumental goals. To de-
velop the theoretical foundations for long-term always-on
relational agents, we will apply SharedPlans theory to rela-
tional goals. We will also extend the theory to include de-
fault rules for how to refine SharedPlans for relational goals.
Finally, we need to account for where the agents’ relational
goals come from.

Relational Goals. Psychological theories of relationship
(Brehm 1992) indicate that partners initiate, build, main-
tain, modify, repair and terminate relationships. In order
to model these activities as collaborative undertakings be-
tween a relational agent and a human, we will need to an-
swer the following questions: How can these activities be
expressed as shared goals? What is the taxonomy of rela-
tional goals? What types of actions contribute towards re-
lational goals? What underlying beliefs and intentions need

Figure 6: Architecture for Always-On Relational Agent

to be modeled to express individual and shared relational
goals? What types of recipes do agents need to achieve rela-
tional goals?

Psychologists have also observed (Duck 1998) that rela-
tional and instrumental goals and actions are deeply inter-
woven in social interactions. For example, an instrumen-
tal action, such as helping someone with their homework,
also contributes toward the goal of building a relationship
between the collaborators. Conversely, social relationship
dialogue, such as “Where do you live?” and “How are you
doing today?,” contributes to the effectiveness of instrumen-
tal goals, as demonstrated by Bickmore’s virtual exercise
coach (Bickmore and Schulman 2009). This synergy is a key
reason why we believe that domestic robots will inevitably
become social members of the household.

However, in current dialogue systems the social dialogue,
if any, is ad hoc and hand-coded into the same task model
with the instrumental parts of the collaboration. In fact,
some researchers, e.g., (Wilks et al. 2010), have argued that
social dialogue cannot be handled with task models at all.
SharedPlans Relationship Theory will provide a systematic
treatment of both instrumental and relational goals and their
interleaving. In addition to providing a clearer scientific un-
derstanding, a practical advantage of this approach is that it
will allow independent development and reuse of relational
and instrumental recipes, thereby reducing the cost of build-
ing always-on relational agents.

Relationship Model. In order to model relational goals
adequately for use with planning algorithms, we need to rep-
resent the intended effects (postconditions) of relational ac-
tions, which requires a model of (the current state of) the
social relationship between the relational agent and each of
its human partners. As a starting point, we plan to use Bick-
more’s relationship model (Bickmore 2003), which is based
on the notion of accommodation (Thomason 1990), in which
a collaborator infers its partner’s goals and takes action to
help without being explicitly requested to do so. A relation-
ship is then characterized by a set of accommodations, i.e.,
a set of implicitly agreed upon collaborative task commit-
ments. These in turn create expectations for future collab-
orations, should the need arise, and reflect provision-based
models of relationship in social psychology (Bickmore and
Picard 2005). For example, the accommodation set between
two friends might come to include all the activities they have
done and enjoyed together in the past (and therefore expect
in the future), such as playing cards, sharing a meal, and so
on. We will develop methods for determining how to initial-
ize and update the set of accommodations based on theories
from the social psychology of personal relationships.

Default Rules. The default rules for refining instrumen-
tal goals are not adequate for refining relational goals. For
example, instrumental collaborations are usually negotiated
explicitly, whereas relational goals are by default tacit. It’s
perfectly natural for adults to say “Let’s fix the faucet,” but
only children think to initiate a relationship by saying “Let’s
be friends.” Adults use a range of tactics to start or move a
relationship forward, but few are explicit. We will investi-
gate such relationship-building tactics in detail and develop



corresponding default rules for refining SharedPlans using
them.

Default rules will also provide general strategies for
adding a relational contribution to any instrumental task.
One such rule is to reflect upon performance. The differ-
ence between a robot companion that simply knows how to
play Gin Rummy, and a relational robot that can participate
in a social game of cards is having default rules for appro-
priately generating comments such as “You’ve gotten a lot
better!” or “I really blew that hand.” The engagement be-
haviors discussed above, such recognizing when someone
wants to initiate or terminate a conversation and knowing
how to signal these intentions yourself, are also important
relational skills.

Desire for Relationship. In addition to the beliefs and in-
tentions of SharedPlans theory, we plan to imbue our rela-
tional agents with a permanent desire to establish and main-
tain social relationships with the humans in their environ-
ments. This desire gives rise to new and persistent relational
goals, such as when a new person enters the environment.
Other goals, such as playing cards, may come into play as
ways of achieving a relationship goal, or from an agent-
specific desire, such as helping the human to change his or
her health behavior. The relationship model can also serve
as a source for persistent goals; one of the tasks in the ac-
commodation set can be chosen as a goal to maintain the
relationship.

Acknowledgments This work was supported in part by
the National Science Foundation under award IIS-0811942.

References
Argyle, M., and Cook, M. 1976. Gaze and Mutual Gaze.
New York: Cambridge University Press.
Banks., M., and Banks, W. 2002. The effects of animal-
assisted therapy on loneliness in an elderly population in
long-term care facilities. J Geronol Med Sci 57A:M428–
M432.
Bickmore, T., and Picard, R. 2005. Establishing and
maintaining long-term human-computer relationships. ACM
Trans. on Computer Human Interaction 12(2):293–327.
Bickmore, T., and Schulman, D. 2009. A virtual laboratory
for studying long-term relationships between humans and
virtual agents. In Proc. Autonomous Agents and Multi-Agent
Systems.
Bickmore, T. 2003. Relational Agents: Effecting Change
through Human-Computer Relationships. Ph.D. Disserta-
tion, MIT Media Laboratory.
Brehm, S. 1992. Intimate Relationships. New York:
McGraw-Hill.
Brennan, S. 1999. How conversation is shaped by visual
and spoken evidence. In Trueswell, J., and Tanenhaus, M.,
eds., Approaches to Studying World-Situated Language Use.
Cambridge, MA: MIT Press. 95–129.

Dix, A. 1992. Pace and interaction. In Proc. of HCI’92:
People and Computers VII, 193–207. Cambridge University
Press.
Duck, S. 1998. Human Relationships. London: SAGE
Publications.
Emery, N. J. 2000. The eyes have it: The neuroethology,
function and evolution of social gaze. Neuroscience and
Biobehavioral Reviews 24:145–146.
Grosz, B. J., and Kraus, S. 1996. Collaborative plans for
complex group action. Artificial Intelligence 86(2):269–357.
Grosz, B. J., and Sidner, C. L. 1986. Attention, intentions,
and the structure of discourse. Computational Linguistics
12(3):175–204.
Grosz, B. J., and Sidner, C. L. 1990. Plans for discourse.
In Cohen, P. R.; Morgan, J. L.; and Pollack, M. E., eds., In-
tentions and Communication. Cambridge, MA: MIT Press.
417–444.
Kendon, A. 1967. Some functions of gaze direction in two
person interaction. Acta Psychologica 26:22–63.
Kopp, S.; Krenn, B.; Marsella, S.; Marshall, A. N.;
Pelachaud, C.; Pirker, H.; Thrisson, K.; and Vilhjlmsson,
H. 2006. Towards a common framework for multimodal
generation: The behavior markup language. In Proc. Conf.
on Intelligent Virtual Agents.
Rich, C., and Sidner, C. 1998. Collagen: A collaboration
manager for software interface agents. User Modeling and
User-Adapted Interaction 8(3/4):315–350.
Rich, C.; Lesh, N.; Rickel, J.; and Garland, A. 2002. A plug-
in architecture for generating collaborative agent responses.
In Proc. 1st Int. J. Conf. on Autonomous Agents and Multia-
gent Systems.
Rich, C.; Ponsler, B.; Holroyd, A.; and Sidner, C. 2010.
Recognizing engagement in human-robot interaction. In
Proc. ACM Conf. on Human-Robot Interaction.
Rich, C.; Sidner, C.; and Lesh, N. 2001. Collagen: Apply-
ing collaborative discourse theory to human-computer inter-
action. AI Magazine 22(4):15–25.
Rich, C. 2009. Building task-based user interfaces with
ANSI/CEA-2018. IEEE Computer 42(8):20–27.
Sidner, C. L.; Lee, C.; Kidd, C.; Lesh, N.; and Rich, C.
2005. Explorations in engagement for humans and robots.
Artificial Intelligence 166(1-2):104–164.
Thomason, R. 1990. Accommodation, meaning, and im-
plicature: Interdisciplinary foundations for pragmatics. In
Cohen, P. R.; Morgan, J. L.; and Pollack, M. E., eds., In-
tentions and Communication. Cambridge, MA: MIT Press.
325–364.
Wilks, Y.; Catizone, R.; Worgan, S.; and Turunen, M. 2010.
Some background on dialogue management and conversa-
tional speech for dialogue systems. Computer Speech and
Language. Forthcoming.


