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Abstract—Based on a study of the engagement process
between humans, we have developed and implemented an initial
computational model for recognizing engagement between a
human and a humanoid robot. Our model contains recog-
nizers for four types of connection events involving gesture
and speech: directed gaze, mutual facial gaze, conversational
adjacency pairs and backchannels. To facilitate integrating
and experimenting with our model in a broad range of robot
architectures, we have packaged it as a node in the open-
source Robot Operating System (ROS) framework. We have
conducted a preliminary validation of our computational model
and implementation in a simple human-robot pointing game.
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I. INTRODUCTION

Engagement is “the process by which two (or more) partici-
pants establish, maintain and end their perceived connection
during interactions they jointly undertake” [1] To elaborate,

...when people talk, they maintain conscientious psycho-
logical connection with each other and each will not
let the other person go. When one is finished speaking,
there is an acceptable pause and then the other must
return something. We have this set of unspoken rules
that we all know unconsciously but we all use in
every interaction. If there is an unacceptable pause, an
unacceptable gaze into space, an unacceptable gesture,
the cooperating person will change strategy and try to re-
establish contact. Machines do none of the above, and it
will be a whole research area when people get around to
working on it. (Biermann, invited talk at User Modeling
Conference, 1999)

In the remainder of this paper, we first review the results
of a video study of the engagement process between two
humans. Based on this and prior studies, we have codified
four types of events involving gesture and speech that con-
tribute to the perceived connection between humans: directed
gaze, mutual facial gaze, conversational adjacency pairs and
backchannels.

Next we analyze the relationship between engagement
recognition and other processes in a typical robot architec-
ture, such as vision, planning and control, with the goal of
designing a reusable human-robot engagement recognition
module to coordinate and monitor the engagement process.
We then describe our implementation of a Robot Operating
System (ROS, see ros.org) node based on this design and its
validation in a simple human-robot pointing game.

A. Motivation
We believe that engagement is a fundamental process that un-
derlies all human interaction and has common features across

a very wide range of interaction circumstances. At least for
humanoid robots, this implies that modeling engagement is
crucial for constructing robots that can interact effectively
with humans without special training.

This argument motivates the main goal of our research,
which is to develop an engagement module that can be
reused across different robots and applications. There is no
reason that every project should need to reimplement the
engagement process. Along with the creators of ROS and
others, we share the vision of increasing code reuse in the
robotics research and development community.

Closer to home, we recently experienced first-hand the
difference between simply implementing engagement be-
haviors in a human-robot interaction and having a reusable
implementation. The robot’s externally observable behavior
in the first version of the pointing game [2] is virtually in-
distinguishable from our current demonstration (see Fig. 13).
However, internally the first version was implemented as
one big state machine in which the pointing game logic,
engagement behaviors and even some specifics of our robot
configuration were all mixed together. In order to make
further research progress, however, we needed to pull out a
reusable engagement recognition component, which caused
us, among other things, to go back and more carefully
analyze our video data. This paper is in essence a report
of that work.

B. Related Work

In the area of human studies, Argyle and Cook [3] docu-
mented that failure to attend to another person via gaze is
evidence of lack of interest and attention. Other researchers
have offered evidence of the role of gaze in coordinating talk
between speakers and listeners, in particular, how gestures
direct gaze to the face and why gestures might direct gaze
away from the face [4], [5], [6]. Nakano et al. [7]) reported
on the use of the listener’s gaze and the lack of negative
feedback to determine whether the listener has grounded [8]
the speaker’s turn. We rely upon the background of all of
this work in the analysis of our own empirical studies.

In terms of computational applications, the most closely
related work is that of Peters [9], which involves agents
in virtual environments, and Bohus and Horvitz [10], [11],
which involves a realistically rendered avatar head on a
desktop display. We share a similar theoretical framework
with both of these efforts, but differ in dealing with a
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Fig. 1. Two camera views of participants in human engagement study (during directed gaze event).

humanoid robot and in our focus on building a reusable
engagement module.

Mutlu et al. [12] have studied the interaction of gaze
and turn-taking [15] using a humanoid robot. Flippo et
al. [13] have developed a similar architecture (see Section
III) with similar concerns of modularity and the fusion of
verbal and nonverbal behaviors, but for multimodal interfaces
rather than robots. Neither of these efforts, however use the
concepts of engagement or connection events.

II. HUMAN ENGAGEMENT STUDY

Holroyd [2] conducted a study in which pairs of humans
sat across an L-shaped table from each other and pre-
pared canapés together (see Fig. 1). Each of four sessions
involved an experimenter and two study participants and
lasted about 15–20 minutes. In the first half of each session,
the experimenter instructed the participant in how to make
several different kinds of canapés using the different kinds
of crackers, spreads and toppings arrayed on the table. The
experimenter then left the room and was replaced by a second
participant, who was then taught to make canapés by the
first participant. The eight participants, six males and two
females, were all college students at Worcester Polytechnic
Institute (WPI). The sessions were videotaped using two
cameras.

In our current analysis of the videotapes, we only looked at
the engagement maintenance process. We did not analyze the
participants’ behaviors for initiating engagement (meeting,
greeting, sitting down, etc.) or terminating engagement (end-
ing the conversation, getting up from the table, leaving the
room, etc.) These portions of the videotapes will be fruitful
for future study.

For each session, we coded throughout: where each person
was looking (at the other person’s face, at a specific object
or group of objects on the table, or “away”), when they
pointed at a specific object or objects on the table, and
the beginning and end of each person’s speaking turn.
Based on this analysis and the literature on engagement
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Fig. 2. Time line for directed gaze (numbers for reference in text).

cited above, we have identified four types of what we call
connection events, namely directed gaze, mutual facial gaze
and adjacency pairs and backchannels. Our hypothesis is that
these events, occuring at some minimum frequency, are the
process mechanism for maintaining engagement.

A. Connection Event Types

Figures 2–5 shows time lines for the four types of connection
events we have analyzed and TABLE I shows some summary
statistics. In the discussion below, we describe the objectively
observeable behaviorial components of each event type and
hypothesize regarding the accompanying intentions of the
participants. Dotted lines indicate optional behaviors. Also,
gesture and speech events often overlap.

1) Directed Gaze: In directed gaze [4], one person (the
initiator) looks and optionally points at some object or
group of objects in the immediate environment, following
which the other person (the responder) looks at the same
object(s). We hypothesize that the initiator intends to bring
the indicated object(s) to the responder’s attention, i.e., to
make the object(s) more salient in the interaction. This
event is often synchronized with the initiator referring to
the object(s) in speech, as in “now spread the cream cheese
on the cracker.” By turning his gaze where directed, the
responder intends to be cooperative and thereby signals his
desire to continue the interaction (maintain engagement).
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Fig. 3. Time line for mutual facial gaze (numbers for reference in text).

In more detail (see Fig. 2), notice first that the pointing
behavior (1), if it is present, begins after the initiator starts
to look (2) at the indicated object(s). This is likely because
it is hard to accurately point at something without looking to
see where it is located.1 Furthermore, we observed several
different configurations of the hand in pointing, such as
extended first finger, open hand (palm up or palm down—see
Fig. 1), and a circular waving motion (typically over a group
of objects). An interesting topic for future study (that will
contribute to robot generation of these behaviors) is to deter-
mine which of these configurations are individual differences
and which serve different communicative functions.

After some delay, the responder looks at the indicated
object(s) (4). The initiator usually maintains the pointing (1),
if it is present, at least until the responder starts looking
at the indicated object(s). However, the initiator may stop
looking at the indicated object(s) (2) before the responder
starts looking (4), especially when there is pointing. This
is often because the initiator looks at the responder’s face,
assumedly to check whether the responder has directed his
gaze yet. (Such a moment is captured in Fig. 1.)

Finally, there may be a period of shared gaze, i.e., a period
when both the initiator (3) and responder (4) are looking at
the same object(s). Shared gaze has been documented [14]
as an important component of human interaction.

2) Mutual Facial Gaze: Mutual facial gaze [3] has a time
line (see Fig. 3) similar to directed gaze, but simpler, since it
does not involve pointing. The event starts when the initiator
looks at the responder’s face (5). After a delay, the responder
looks at the initiator’s face, which starts the period of mutual
facial gaze (6,7). Notice that the delay can be zero, which
occurs when both parties simultaneously look at each other.

The intentions underlying mutual facial gaze are less clear
than those for directed gaze. We hypothesize that both the
initiator and responder in mutual facial gaze engage in this
behavior because they intend to maintain the engagement
process. Mutual facial gaze does however have other inter-
action functions. For example, it is typical to establish mutual
facial gaze at the end of a speaking turn.

1It is usually possible to creatively imagine an exception to almost any
rule such as this. For example, if a person is standing with his back to a
mountain range, he might point over his shoulder to “the mountains” without
turning around to look at them. We will not bother continuing to point out
the possibility of such exceptions below.
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Fig. 4. Time line for adjacency pair (numbers for reference in text).
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Fig. 5. Time line for backchannel (numbers for reference in text).

Finally, what we are calling mutual facial gaze is often
referred to informally as “making eye contact.” This latter
term is a bit misleading since people do not normally stare
continously into each other’s eyes, but rather their gaze roams
around the other person’s face, coming back to the eyes from
time to time.

3) Adjacency Pair: In linguistics, an adjacency pair [15]
consists of two utterances by two speakers, with minimal
overlap or gap between them, such that the first utterance
provokes the second utterance. A question-answer pair is
a classic example of an adjacency pair. We generalize this
concept slightly to include both verbal (utterances) and non-
verbal communication acts. So for example, a nod could
be the answer to a question, instead of a spoken “yes.”
Adjacency pairs, of course, often overlap with the gestural
connection events, directed gaze and mutual facial gaze.

The simple time line for an adjacency pair is shown in
Fig. 4. First the initiator communicates what is called the first
turn (8). Then there is a delay, which could be zero if the
responder starts talking before the the initiator finishes (9).
Then the responder communicates what is called the second
turn (9,10). In some conversational circumstances, this could
also be followed by a third turn (11) in which the initiator,
for example, repairs the responder’s misunderstanding of his
original communication.

4) Backchannel: A backchannel [15] is an event (see
Fig. 5) in which one party (the responder) directs a brief
verbal or gestural communication (13) back to the initiator
during the primary communication (12) from the initiator
to the responder. Typical examples of backchannels are
nods and/or saying “uh, huh.” Backchannels are typically
used to communicate the responder’s comprehension of the
initiator’s communication (or lack thereof, e.g., a quizzical
facial expression) and/or desire for the initiator to continue.
Unlike the other three connection event types, the start of a
backchannel event is defined as the start of the responder’s
behavior and this event has no concept of delay.
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TABLE I
SUMMARY STATISTICS FOR HUMAN ENGAGEMENT STUDY

count delay (sec)
min mean max

directed gaze succeed 13 0 0.3 2.0
fail 1 1.5 1.5 1.5

mutual facial gaze succeed 11 0 0.7 1.5
fail 13 0.3 0.6 1.8

adjacency pair succeed 30 0 0.4 1.1
fail 14 0.1 1.2 7.4

backchannel 15 n/a n/a n/a
mean time between connection events (MTBCE) = 5.7 sec

max time between connection events = 70 sec

B. Summary Statistics

Summary statistics from a detailed quantitive analysis of
approximately nine minutes of engagement maintenance time
are shown in TABLE I. The time between connection events
is defined as the time between the start of successive events,
which properly models overlapping events. We hypothesize
that the mean time between connection events (MTBCE)
captures something of what is informally called the “pace”
of an interaction [16]:

pace ∝
1

MTBCE
In other words, the faster the pace, the less the time be-

tween connection events. Furthermore, our initial implemen-
tation of an engagement recognition module (see Section IV)
calculates the MTBCE on a sliding window and considers
an increase as evidence for the weakening of engagement.

Two surprising observations in TABLE I are the relatively
large proportion of failed mutual facial gaze (13/24) and
adjacency pair (15/45) events and the 70 second maximum
time between connection events. Since we do not believe that
engagement was seriously breaking down anywhere during
the middle of our sessions, we take these observations as an
indication of missing factors in our model of engagement. In
fact, reviewing the specific time intervals involved, what we
found was that in each case the (non-)responder was busy
with a detailed task on the table in front of him.

III. HUMAN-ROBOT ARCHITECTURE

The key to making a reusable component is careful attention
to the setting in which it will be used and the “division of
labor” between the component and the rest of the computa-
tional environment in which it is embedded.

A. Human-Robot Setting

Fig. 6 shows the setting of our current architecture and
implementation, which mirrors the setting of the human
engagement study, namely a human and a humanoid robot
with a table of objects between them. Either the robot or the
human can be the initiator (or responder) in the connection
event time lines shown in the previous section.

Like the engagement maintenance part of the human study,
mobility is not part of this setting. Unlike the human study,
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Fig. 6. Setting of human-robot interaction.

we are not dealing here with manipulation of the objects
or changes in stance (e.g., turning the body to point to or
manipulate objects on the side part of the L-shaped table).

Both the human and the robot can perform the following
behaviors and observe them in the other:

• look at the other’s face, objects on the table or “away”
• point at objects on the table
• nod the head (up and down)
• shake the head (side to side)
The robot can generate speech that is understood by the

human. However, our current system does not include natural
languge understanding, so the robot can only detect the
beginning and end of the human’s speech.

B. Information Flow

Fig. 7 shows the information flow between the engagement
recognition module and rest of the software that operates
the robot. In ROS, this information flow is implemented via
message passing. Notice first in Fig. 7 that the rest of the
robot architecture, not including the engagement recognition
module, is shown as a big cloud. This vagueness is inten-
tional in order to maximize the reusability of the engagement
module. This cloud typically contains sensor processing,
such as computer vision and speech recognition, cognition,
including planning and natural language understanding, and
actuators that control the robot’s arms, head, eyes, etc.
However, the exact organization of these components does
not matter to the engagement module. Instead we focus
on the solid arrows in the diagram, which specify what
information the rest of the robot architecture must supply
to the engagement module.

Starting with arrow (1), the engagement module needs
to receive information about where the human is looking
and pointing in order to recognize human-initiated directed
gaze and mutual facial gaze events. It also needs to be
notified of the human’s head nods and shakes in order to
recognize human backchannel events and human gestural
turns in adjacency pair events.

The engagement module also needs to be notified (2)
of where the robot is looking (in order to recognize the
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Fig. 7. Information flow between engagement recognition and the rest of robot architecture (numbers for reference in text).

completion of a human-initiated directed gaze or mutual
facial gaze), pointing and when the robot nods or shakes.
This may seem a bit counterintuitive at first. For example,
would not the engagement module be more useful if it took
responsibility for making the robot automatically look where
the human directs it to look? The problem with this potential
modularity is that the decision of where to look can depend
on a deep understanding of the current task context. You
may sometimes ignore an attempt to direct your gaze—
suppose you are in the midst of a very delicate manipulation
on the table in front of you when your partner points and
says “look over here.” Such decisions need to be made in
the cognitive components of the robot. Similarly, only the
cognitive components can decide when the robot should
point and whether it should backchannel comprehension
(nod) or the lack thereof (shake).

Robot engagement goals (3) trigger the engagement recog-
nition module to start waiting for the human response in all
robot-initiated event types, except backchannel (which does
not have a delay structure). For example, suppose the (cog-
nitive component of the) robot decides to direct the human’s
gaze to a particular object. After appropriately controlling
the robot’s gaze and point, a directed-gaze engagement goal
is then sent to the engagement component.

The floor refers to the (primary) person currently speaking.
Floor change information (3) supports the recognition of
adjacency pair events. In natural spoken conversation, people
signal that they are done with their turn via a combination of
intonation, gesture (mutual facial gaze) and utterance seman-
tics (e.g., a question). The engagement module thus relies on
the rest of the robot architecture to decide when the human
is beginning and ending his/her turn. Similarly, only the
cognitive component of the robot can decide when/whether
to take and/or give up the robot’s turn.

Arrow (4) summarizes the information that the engage-
ment recognition module provides to the rest of the robot ar-
chitecture. First, the module provides notification of the start
of human-initiated connection events, so that the robot can
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Fig. 8. Internal architecture of engagement recognition module.

respond. It also provides real-time feedback on the successful
or unsuccessful completion of robot-initiated connection
events (engagement goals). For example, if the robot directs
the user’s gaze to an object and the user does not look at the
object, the engagement module notifies the robot, so it can try
again, if necessary. Finally, the engagement module provides
ongoing statistics, similar to those in TABLE I, which the
robot can use to gauge the health of the engagement process
and decide, for example, to initiate more connection events.

C. Engagement Recognition Module

Fig. 8 shows the internal architecture of the engagement
recognition module, which consists of four parallel rec-
ognizers that feed information to an integrator. The state
machine for each recognizer is shown in the next section.
More than one recognizer may be active simultaneously
(i.e., overlapping connection events), but only one event of
each type may be in progress at any time. Each recognizer
responds to a subset of the information coming into the
recognition module. Each recognizer reports its start time,
end time and (except for backchannel) its delay duration
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Fig. 9. Recognizer for directed gaze (see Fig. 2).
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Fig. 10. Recognizer for mutual facial gaze (see Fig. 3).

and whether it successfully completed its time line or failed
(usually due to a delay timeout).

The integrator incrementally calculates the mean and max-
imum delays and time between connection events, and the
number of failed events per unit time, over both a recent
time window and the whole interaction (baseline). These
statistics are provided to the rest of the robot architecture
as an estimate of the current strength of engagement. For
example, increases in recent versus baseline delays, time
between connection events, or failure rate may indicate the
human’s desire to disengage. Exactly how to weigh these
factors along with other information, such as the content of
what the human says, is beyond the scope of the engage-
ment recognition module. Future experimentation may yield
further insight into this issue.

IV. HUMAN-ROBOT IMPLEMENTATION

Each recognizer in Fig. 8 has been implemented as a finite
state machine which tracks the time line of the corresponding
connection event, and packaged together into an ROS node.

A. Recognizers

Figures 9 through 12 show pseudocode-level state machine
diagrams for recognizing each of the four connection event
types described by the corresponding time lines in Figures
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Fig. 11. Recognizer for adjacency pair (see Fig. 4).
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Fig. 12. Recognizer for backchannel (see Fig. 5).

2 through 5. Notice that the time lines, because they are
descriptions from an outside observer’s point of view, are
symmetric when applied to human-robot interaction, i.e.,
either the human or the robot can be the initiator or responder
for a particular event occurrence. The state machines, how-
ever, because they are computations from the point of view
of the robot, are asymmetric, i.e., they follow different state
transition paths for human-initiated versus robot-initiated
events.

Each state machine starts in the state labeled Start and
terminates in either a Succeed or Fail state, at which point
the relevant statistics for the event occurrence are provided to
the statistics process (see Fig. 8). State transitions occur in re-
sponse to messages coming into the engagement recognition
module. Some anomalous transitions have been suppressed
for readability, but are included in the ROS documentation.

1) Directed Gaze: In Fig. 9, recognition of a human-
initiated directed gaze event is triggered by the human look-
ing and optionally pointing at an object. After transitioning
to the Human Waiting state, the recognizer waits until either
the robot decides to respond by looking at the same object
(in which case the Shared Gaze state is entered), or time
runs out, or the robot decides it wants to make eye contact
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or direct the human’s gaze to another object instead (in
which case the event fails). The Shared Gaze state always
transitions to Succeed, which occurs when either the human
or robot stops looking at the directed object.

The state transition path for recognizing a robot-initiated
directed gaze event is similar, except that the directed gaze
goal (robot intention) triggers the transition from Start to
Robot Waiting. At this point, the robot is supposed to already
be looking and optionally pointing at the directed object. As
before, the recognizer waits, in this case until the human
looks at the directed object, before entering the Shared Gaze
state. If time runs out or the robot decides to make eye
contact and is not also pointing, then the event fails.

2) Mutual Facial Gaze: Fig. 10 has a similar state struc-
ture to directed gaze, with a Mutual Facial Gaze state instead
of Shared Gaze. The Mutual Facial Gaze state transitions
to Succeed when either the robot or the human breaks
eye contact. As in directed gaze, the Human Waiting and
Robot Waiting states correspond to the recognition of human-
initiated and robot-initiated events, respectively, and each of
these states may lead to failure due to timeout. Also, at the
point that the mutual facial gaze goal message arrives, the
robot is supposed to already be looking at the human’s face.
Finally, if the robot decides to look at another object (directed
gaze goal) during either the Human Waiting or Robot Waiting
state, the event fails (because the robot cannot both make eye
contact and look at an object at the same time).

3) Adjacency Pair: The state machine in Fig. 11 for rec-
ognizing adjacency pairs also has Human Waiting and Robot
Waiting states (with timeouts to failure), on the human-
initiated and robot-initiated recognition paths, respectively.
The other transitions in this recognizer depend on floor
change messages. Unlike the previous two recognizers, this
state machine could in fact be written more compactly in
terms of an initiator and responder, but for consistency of
understanding we have expanded out separate paths for the
human and robot.

We have not yet implemented the handling of third turns
or barge-in (when one party starts taking a turn—not just a
backchannel—without the other party first yielding the floor).

4) Backchannel: The state machine in Fig. 12 has no
delays or failure states. Basically, the machine keeps track
of who has the floor so that it can recognize a backchannel
nod or shake by the other party.

B. ROS Node

ROS is a distributed framework of processes (called nodes)
that communicate via message passing. Nodes are grouped
into packages, which can be easily shared and distributed.
We have contributed a package called “engagement,” which
currently contains a single node called “recognition.” (We
will eventually add a “generation” node—see Section V.)

Information flows into and out of an ROS node via mes-
sages (called topics) and services. Services are a higher-level

Fig. 13. The pointing game.

abstraction that uses messages to implement return values
(similar to remote procedure call). Each type of information
flowing into the engagement recognition node (see Fig. 7),
except for the robot engagement goals, is a separate ROS
topic (message type).

C. Preliminary Validation

As a preliminary validation of our computational model
and implementation, we developed a simple human-robot
demonstration, which we call the “pointing game” (see
Fig. 13), that naturally includes the three main engagement
behaviors we are studying (no backchannels). Our humanoid
robot was built by Michaud et al. at U. Sherbrooke (Canada).
We used Morency’s Watson system [17] for face and gaze
tracking and detecting head nods and shakes, and OpenCV
to implement plate and hand tracking. Since the focus of
our research is on engagement and collaboration, we have
simplified the robot’s vision problem as much as possible.
We used Collagen [18] for the cognitive component of the
robot.

In the pointing game, several plates of different colors are
place randomly on the table between the human and robot.
The robot starts the game by saying “Please point at a plate.”
The human is then expected to respond by pointing at any
plate. The robot identifies the chosen plate by pointing to it
and saying, for example, “You pointed at the red plate.” If the
human does not respond within a certain amount of time, the
robot asks “Do you want to stop now?” If the human nods
yes, the robot says “Thank you for playing”; if he shakes
no, then the robot repeats its last request.

Our first step was to choose values for the single adjustable
parameter of each state machine in Figures 9 through 12,
namely the delay timeout. We did this subjectively by
testing different values starting with the minimum, mean
and maximum delays observed in the human study for the
corresponding failed event types (see TABLE I). For this
testing, we used a simple programming loop in which the
robot repeatedly initiated the same event type over and over
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TABLE II
SUMMARY STATISTICS FOR HUMAN-ROBOT DEMONSTRATION

count delay (sec)
min mean max

directed gaze succeed 19 0 0.4 2.3
fail 50 0 1.6 3.0

mutual facial gaze succeed 43 0 0.3 1.6
fail 36 0.1 0.7 1.8

adjacency pair succeed 21 0 1.0 2.4
fail 12 3.1 3.1 3.1

mean time between connection events (MTBCE) = 3.0 sec
max time between connection events = 9.9 sec

and waited for the human to respond. The subjectively best
delay timeout values were 3.0 sec. for directed gaze, 1.8 sec.
for mutual facial gaze and 3.1 sec for adjacency pair. When
the timeouts were less than these values, the robot tended to
go on before we had time to react; when the timeouts were
greater, it felt like we were waiting for the robot a lot.

Next we had three WPI students play the pointing game
and collected the aggregated statistics shown in TABLE II.
Comparing this data overall with the human data in TABLE I
provides a positive preliminary validation. In more detail, no-
tice that the overall pace (MTBCE) was faster in the pointing
game than in the human study. We believe this is because the
task content in the human study (making canapés) required
more thinking time compared to the trivial pointing game.
Also, the anomalous (less than timeout) values for minimum
delay in failed directed gaze and mutual facial gaze events are
due to the fact that, in the current pointing game generation
code, the robot sometimes proceeds without responding to
human-initiated connection events.

V. FUTURE WORK

The most immediate future work is a larger, controlled
human-robot study to further validate the engagement recog-
nition model and implementation, using a collaborative task
that is more similar in complexity to making canapés. The
study should compare conditions in which the delay timeouts
are more systematically varied and in which various parts
of the recognizer state machines are disabled. Comparisons
will include objective measures, such as time and quality of
task completion, and subjective post-study questions to the
participants about the robot, such as how attentive it seemed,
how easy it was to collaborate with, etc.

We have also started working on the problem of how
to factor the generation of engagement behaviors into a
separate reusable module with abstract interfaces to the rest
of a generic robot architecture. The decisions in this module
concern when the robot should initiate connection events and
when/whether it should respond to human-initiated events.

Finally, as mentioned in Section II, the current taxonomy
of connection events provides a complete account of the
engagement process, particularly as we move beyond the
maintenance phase to formalize the initiation and termination
of engagement. For example, the effect on engagement of

many kinds of nonverbal social and emotional transactions
between people, such as laughing, smiling, waving, fidgeting
in your seat, etc., need to be studied (even though it may be
a while until robotic technology is capable of recognizing or
producing all of these). Also, although Bohus and Horvitz
[10] have started to model engagement in multiperson inter-
actions, further development of detailed behavioral models,
such as those in this paper, is needed.
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