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ABSTRACT

This paper describes a Behavior Markup Language (BML)
realizer that we developed for use in our research on human-
robot interaction. Existing BML realizers used with vir-
tual agents are based on fixed-timing algorithms and be-
cause of that are not suitable for robotic applications. Our
realizer uses an event-driven architecture, based on Petri
nets, to guarantee the specified synchronization constraints
in the presence of unpredictable variability in robot control
systems. Our implementation is robot independent, open
source and uses the Robot Operating System (ROS).
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General Terms
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1. INTRODUCTION

In this work, we build upon research in the virtual agent
community by using the Behavior Markup Language (BML)
[3] to control robots interacting with humans. Many virtual
agents, e.g. [5], have been controlled using BML. Using
BML for robots will be just as important, since many robots
need to interact with people in equally complex ways. This
paper describes the benefits of applying BML to human-
robot interactin and the problems we solved to make that
possible.

Imagine a person ambiguously asking a robot to pick up
a soda can when there are two cans on the table. The robot
might respond by saying “This can?,” while simultaneously
looking and pointing toward one of the cans. These looking
and pointing behaviors need to be synchronized correctly in
relation to the speech for a natural, human-like performance.
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<bml id="bml-example-1">
<gaze id="gaze-1" target="can-1"/>
<gesture id="point-1" type="POINT"
target="can-1"/>
<speech id="speech-1">
<text>This can?</text> </speech>
<constraint id="constraint-1">
<synchronize ref="gaze-1:stroke">
<sync ref="point-1:start" />
</synchronize>
<synchronize ref="point-1:stroke_start">
<sync ref="speech-1:start" />
</synchronize> </constraint>

Figure 1: Example BML block
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stroke_start  stroke

stroke_end relax
gaze-1

start ready  stroke_start

point-1

start
speech-1

Figure 2: Part of the Petri net for Figure 1

The example BML in Figure 1 shows the behaviors in-
volved in this example and the constraints between them.
It contains a single gaze behavior (gaze-1) toward can-1,
along with a pointing behavior (point-1). The speech be-
havior (speech-1) contains the text “This can?” to be ut-
tered overlapping with the other behaviors. The constraints
ensure that the pointing gesture does not start until the
robot is looking at the object, and that the speech starts
when the robot is beginning to point toward the object.

2. DIFFICULTIES WITH FIXED-TIMING
REALIZERS FOR ROBOTS

BML was created by Kopp et al. [3], who identified the
need for a common behavior specification framework for vir-
tual agents. All BML realizers have two phases: scheduling
and execution. In the scheduling phase, a shortest possible
schedule that satisfies the constraints is created. The execu-
tion phase then uses this schedule to perform the behaviors
in real time. Current animation realizers (see Figure 3), run
open-loop using fixed-time schedules, which works because
the realizer can generate key-frames. These realizers plan
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Figure 3: Animation BML realizer architecture
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Figure 4: Robot BML realizer architecture

the BML using a fixed-timeline representation and generate
key-frames based on the required joint angles. The key-
frames are interpolated and shown to the user. Anh and
Pelachaud [1] developed a fixed-timing realizer for a Nao
robot based on the Greta animation engine. This system
uses a database of motions and synchronizes them using
fixed-timing constraints. They acknowledge the need for,
but do not provide, an event-drive realizer for robots.

In an animation, since the time between each of the sync
points can be chosen, fixed-timing algorithms are easy to
implement. Also, in the animation setting, the timeline is
guaranteed to execute properly. In robotics, however, there
are several problems that cause fixed-timing approaches not
to work.

The first, and most common, problem is when the motion
of a joint motor is slower than expected, perhaps because
it is stalled or a battery is partially drained. In this case
the other motions need to be delayed and wait. For exam-
ple, the realizer may need to wait for the arm to reach the
correct position before starting to speak. A second example
problem occurs when the robot’s arm reaches its target po-
sition earlier than expected, perhaps because the arm was
closer to the target than the robot believed.

3. EVENT-DRIVEN SOLUTION

A robotic realizer (see Figure 4) is fundamentally different
from an animation realizer in that it must be controlled
closed-loop, with control events being sent from the robot
to the realizer. The control events are joint position (e.g.,
when a joint reaches the desired position) or velocity ac-
knowledgements. These events suggest an event-driven sys-
tem to ensure the synchronization constraints. The output
of the scheduling stage in this approach is thus a Petri net
[4] representing a minimum-time event-based schedule. We
chose Petri nets because they conveniently represent events
and their synchronization constraints.

Figure 2 shows part of the Petri net schedule resulting
from Figure 1. A Petri net consists of places (represented as
circles), transitions (represented as vertical bars), and tokens
which are transmitted between places and transitions. In a
Petri net BML schedule, each place represents a sync point

of a behavior and the transitions represent synchronization
constraints. Each transition and place waits for all incoming
tokens and sends one token out on each arrow.

Our scheduling algorithm starts by creating a separate
seven-place Petri net for each behavior that appears in the
BML block. Figure 2 contains three such sub-nets, but none
are completely shown due to limits on space.

Scheduling a synchronize constraint corresponds to merg-
ing the transitions prior to the given sync points. Note that
this new merged transition replaces the prior two transitions,
and synchronizes the sync points because transitions must
wait for all incoming tokens before sending tokens out on all
outputs.

Scheduling a before or after constraint is accomplished
by adding a single arrow starting at the first place and end-
ing at the transition prior to the second place. Note that the
after constraint is the inverse of a before; thus without loss
of generality the following two constraints are equivalent:
<before ref="X">

<sync ref="Y"/>
</before>

<after ref="Y">
<sync ref="X"/>
</after>

Our BML executor is implemented in ROS Java.! Start-
ing from the left-most transition in Figure 2, the executor
calls a robot-specific control ROS module for each sync point
of each behavior. This control module sends joint commands
to the robot and returns events when the given sync point
is reached. Each transition and place is a new thread of ex-
ecution that waits for all incoming tokens before executing.
Similarly, the thread ends once all tokens have been sent on
all of the output lines.

In conclusion, we have shown the theory and provided an
open-source ROS implementation of an event-driven BML
realizer for robots. We used this realizer in [2] and will
continue to use it in future research.
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