
A Non-Modal Approach to Integrating Dialogue and Action
Philip Hanson and Charles Rich

Worcester Polytechnic Institute
Worcester, MA 01609, USA

rich@wpi.edu

Abstract

We have developed and demonstrated an experimental
authoring and run-time tool, called Disco for Games,
that supports the creation of games in which dialogue
and action are integrated without the need for changing
modes. This tool is based on collaborative discourse
theory and hierarchical task networks, in which utter-
ances are treated as actions, and has a number of ad-
ditional benefits including better modeling of interrup-
tions, automatic dialogue generation, plan recognition
and automatic failure retry.

Introduction
A problem with many current computer games that include
both dialogue and action is that dialogue and action are sup-
ported in two distinct user interface (UI) modes. Each UI
mode has different affordances and controls, and you usu-
ally need to explicitly switch between them. For exam-
ple, dialogue mode typically provides a display of what the
nonplayer character (NPC) is saying and a menu of utter-
ances from which the player can choose, while action mode
typically provides affordances and controls for moving and
manipulating objects in the environment, aiming and firing
weapons, fighting, etc.

This modal approach is a problem because it is not a
good reflection of natural human interaction in which talk-
ing and acting are seamlessly interwoven. It also encourages
game design in which characters are divided into “talkers
and fighters,” which tends to make both types of characters
less rich than possible.

Furthermore, the artificial separation of dialogue and ac-
tion into distinct UI modes is a symptom of a deeper di-
chotomy between the technologies used to implement di-
alogue and action. In this work, we address both the UI
issue and the underlying technology issue by using hierar-
chical task networks (HTN’s) (Erol, Hendler, and Nau 1994)
and applying a basic principle of collaborative discourse the-
ory (Lochbaum 1998), namely to treat utterances as a type
of action. We have developed an experimental authoring
and run-time tool, called Disco for Games (D4g),1 based on
this approach and have used it to build a simple 2D puzzle-
adventure game with a non-modal interface. Using D4g to
build games has other benefits, which we point out below.

A Demonstration Game
Our demonstration game is titled Secrets of the Rime and
primarily involves the player and a sidekick character, both

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1This tool was originally called Tizona in (Hanson 2010).

Figure 1: Screen Shot of Ice Blocks Level

researchers in Antarctica, who find themselves cut off from
their research base and must take the long way back. Col-
laboration is an integral part of game play, with most puzzles
requiring coordination of player and sidekick actions.

Secrets is composed of four levels, each containing a puz-
zle to be solved or task to be completed:

• Ice Blocks: cross a river with two islands (see Figure 1)
• Ice Wall: get past a wall that is too high to jump
• Shelter: build a shelter with materials at hand
• Walrus Cave: solve riddles posed by a Sphinx-like walrus

At the start of each level, the player and sidekick are lo-
cated near the left edge of the area map. The next level and
their ultimate goal, the research base, are always to the right.
At the moment in the Ice Blocks level shown in Figure 1, the
sidekick (square orange head2) has just crossed from the first
to the second island, thrown back a rope to help the player
(round white head) cross the water, and said “Please grab
the rope” (shown in bubble above the sidekick’s head). Fi-
nally, notice the green rectangle with “grab rope” that has
just popped up as the player has approached the end of the
rope. This indicates that if the player moves a bit further, he
will perform this action.

The interface to this game is non-modal because the
player is completely free at any time to either move up,
down, left or right using arrow keys, interact with objects
in the environment, or choose from the utterances shown in
the dialogue menu at the bottom of the screen using number
keys. This is achieved by integrating dialogue and action
into a single representation.

2Please excuse the “programmer art.”

AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, Palo Alto, CA, Oct. 2010.

[Achieve CrossRiver] -live
Player says "We need to get to the other side."
[Get from the near side to the first island by making a bridge] -done
[...] -done

Sidekick says "How do you want to get from the near side to the first island?"
Player push an ice block into the water. -succeeded
[Player walk to the first island] -succeeded

Sidekick says "Please walk to the first island."
[Get from the first island to the second island using the rope] -live
[...] -done

Sidekick says "How do you want to get from the first island to the second island?"
Player says "It’s too far for me to swim. There’s a rope, though..."
Sidekick says "Well, I can make it across. I’ll send you a postcard from the other side."
Sidekick swim from the first island to the second island.
Sidekick throw the rope.
[Player grab the rope] -live <-focus

Sidekick says "Please grab the rope."
[Get from the second island to the far side]

Figure 2: Automatically Generated Interaction History at Moment Shown in Figure 1

Interaction History
To begin to understand the representation underlying D4g,
please refer to Figure 2, which contains the interaction his-
tory automatically generated by D4g at the moment shown
in Figure 1 (with a few distracting details replaced by el-
lipses). Interaction histories are an additional benefit of us-
ing D4g. They are a textual visualization of D4g’s internal
state representation, which show the past, present and ex-
pected future of the current interaction between the player
and an NPC. They are an invaluable tool for debugging game
designs and may also serve as an entertaining post-play re-
view for players.

Underlining has been added to the history in Figure 2 to
highlight the interleaving of utterances and actions. Notice
that the player has pushed an ice block into the water be-
tween the near side and the first island creating an ice bridge
(still visible in Figure 1), over which the player and sidekick
walked. Then, after some conversation, the sidekick swam
to the second island, threw the rope, and asked the player to
grab it.

The bracketed lines in interaction histories represent
goals. The indentation shows the recursive decomposition
of goals into subgoals or primitives. Primitives are either
utterances or actions. The status of each goal is indicated
by flags: -done, -succeeded and -failed indicate completed
goals; -live indicates goals that are ready to start or in
progress; future goals that are not yet ready to start have
no flag (such as the last line in the history).

Finally, notice the “focus” pointer on the third-to-last line
in Figure 2, which indicates the goal that is currently at the
top of D4g’s focus stack. All of this goal’s parents (goals
that are above it and less indented in the history listing) are
below this goal on the focus stack. The focus stack is an
additional benefit of using D4g, because it allows characters
to properly handle interruptions in conversations (see details
in (Hanson 2010)).

Related Work
Despite other relevant research (see below), the modal
approach is still the state of the art in commercial
entertainment-oriented games right up the present time, e.g.,

Deus Ex (2002), Elder Scrolls IV: Oblivion (2006) and
Dragon Age: Origins (2009). The dialogue characters in
such games are typically programmed using dialogue trees.
The technologies used to implement the action (fighting)
characters are more varied. Ad hoc code, finite state ma-
chines and decision trees are common options; recently, be-
havior trees have become popular.

The problem with this current technical state of affairs is
that if a developer wants to implement a character capable of
both dialogue and action, that character needs in effect to be
implemented twice: once with dialogue trees and once with
an action technology. Furthermore, coordination between
the states of the two subsystems typically entails an ad hoc
collection of flags, hidden variables, etc., which is labor in-
tensive and error prone. The result is that few integrated
characters are created.

Façade (Mateas and Stern 2003) was the first experimen-
tal entertainment game to demonstrate the power of HTN’s
to integrate dialogue and action. However, even its authors
acknowledge that it was more of an engineering tour de
force, rather than a practical technology. Subsequent work
on Wide Ruled (Skorupski et al. 2007) is aimed toward mak-
ing practical development tools, but has not yet been demon-
strated with a game engine.

HTN’s have been used extensively in training and simu-
lation systems, such as MRE (Traum et al. 2003), which al-
though they share a lot of technology, have not yet had much
crossover into entertainment games. Story and dialogue gen-
eration using HTN’s has been explored in interactive fiction,
such as (Cavazza and Charles 2005), but the mechanisms for
player involvement have not been well developed.

In comparison with this related work, Disco for Games
aims to be a practical tool for developing entertainment
games, such as Secrets, and has been integrated into a game
engine with natural player involvement. Unlike Façade and
MRE, D4g does not focus on solving the problem of unre-
stricted natural language input, but instead provides a grace-
ful extension to dialogue trees. We also hope that the fact
that D4g is open source and uses a task modeling standard
(ANSI/CEA-2018), will contribute to its practicality.

Disco for Games
Disco for Games (D4g) uses HTN’s in a way that subsumes
both dialogue trees and a certain kinds of behavior trees.3
In D4g, utterances are treated as just another type of action,
so that utterances and actions can be freely interleaved at
as fine a granularity as desired. Furthermore, because there
is a single engine managing the entire interaction between
the player and NPC, the problem of ad hoc flags and hid-
den variables to coordinate between dialogue and action is
obviated.

Figure 3 shows the component architecture used to build
our demonstration game with D4g. At design time, authors
specify a task model using an XML formalism we have de-
fined, Disco for Games Markup Language (D4gML), which
is a macro extension of the ANSI/CEA-2018 task modeling
standard (Rich 2009) (task modeling and D4gML are dis-
cussed further below). In addition, authors specify the usual
other game content, such as graphics models, textures, audio
files, etc.

At run time, D4g reads in the author’s task model and
uses it to manage all of the dialogue and action interac-
tion between the player and an NPC. D4g is implemented
on top of Disco, which is a successor to the Collagen
(Rich, Sidner, and Lesh 2001) collaborative discourse man-
ager. Finally, there is the game engine, which loads and
uses the other design-time game content (see below for
more detail on the connection between D4g and a game en-
gine). In the case of Secrets, the game engine is Golden T
(www.goldenstudios.or.id). All of the run-time components
are implemented in Java and are open source.

Task Modeling
One of the basic principles of collaborative discourse theory
that leads to the utterance as action approach is that the struc-
ture of a conversation, especially one involving a collabo-
rative activity, follows the underlying task structure, which

3The exact definition of a behavior tree is still in flux.

Figure 3: Component Architecture

is often modeled as an HTN. For example, Figure 4 shows
the task model that controls the entire interaction in the Ice
Blocks level of Secrets described above.

The diagrammatic notation in this figure highlights the
key features of an HTN, but there are important additional
details in the full ANSI/CEA-2018 specification, such as
JavaScript applicability conditions, which can optionally be
provided for any action, goal or decomposition. Goals and
actions may also have a postcondition, which determines
whether they have succeeded or failed (see Game Engine
API below).

Goals and actions in a task model diagram are shown as
ovals; goal decompositions are shown as diamonds. Actions
are distinguished from goals by not having any decomposi-
tions. Goals are connected to decompositions using dashed
lines; the steps of a decompositions are shown using solid
lines.4 Steps are by default unordered; (partial) ordering
constraints can be added using arrows. Restrictions on ac-
tions, such as whether only the NPC (sidekick) or player

4Figure 4 uses a common diagrammatic abbreviation in which
if there is only a single possible decomposition for a given goal,
such as CrossRiver, the diamond node is omitted.

Figure 4: Task Model for IceBlocks Level

Figure 5: Disco Collaborative Discourse Manager

may perform it, are indicated in square brackets. The se-
mantics of these models is similar to and/or trees, where di-
amonds are and nodes and ovals are or nodes.

Thus in Figure 4 there is one top-level goal, CrossRiver,
which is always decomposed into three totally ordered steps
(subgoals), each of which is an instance of a goal called
GetTo, with its two parameters (from and to location) appro-
priately bound. GetTo has three alternative decompositions,
corresponding to swimming, making a bridge, or using the
rope. Notice that the two steps of the ’water’ decomposition
are unordered, which means that in different playings of the
game, the player and sidekick can swim across in different
orders. This is a minor example of the kind of playing vari-
ation that task models can provide in general with very little
effort.

Figure 5 summarizes how Disco manages the NPC-player
interaction. The heart of Disco is the discourse state rep-
resentation, based on collaborative discourse theory, which
consists of a plan (task) tree and a focus stack. The main pro-
cess in Disco is discourse interpretation, which updates the
discourse state by explaining how the observed utterances
and actions of the player and NPC relate to the loaded task
model(s). Part of this interpretation involves updating the
liveness flags discussed in Figure 2. The main output of
Disco is to generate, for the player, a list of utterance menu
options which make sense in terms of the current discourse
state, and for the NPC, a single appropriate utterance or ac-
tion for it to perform next. As mentioned earlier, Disco can
also produce interaction histories at any time for debugging
or review.

Automatic Dialogue Generation
An observant reader may have noticed that there are no ut-
terances in the task model for the Ice Blocks level in Figure
4, and yet there are many utterances by both the player and
the sidekick in the corresponding interaction history in Fig-
ure 2. This is because one of the benefits of using D4g (that
comes from Disco) is the automatic generation of dialogue
based on the current discourse state. The automatic dialogue
generation is based on a lightweight semantics for utterances
(Sidner 1994) and a generic rule plugin framework (Rich et
al. 2002), neither of which space permits describing here. A
simple and typical example will have to suffice.

The sidekick utterance in the middle of Figure 2, “How do
you want to get from the first island to the second island?”,
was automatically generated by a rule triggered by the fact
that the current discourse focus is a goal (GetTo) with mul-
tiple decompositions, none of which has yet been chosen or
started. In addition to generating this sidekick utterance in

this state, Disco also automatically generated the appropriate
player menu at this point based on the applicable decompo-
sition alternatives for the current goal, which in this case is
only ’rope’:

1 Let’s get from the first island . . . using the rope
2 Let’s not get from the first island to the second island

The second menu choice above is generated from another
generic rule that always gives the player the option to reject
the current goal.

To avoid the internal node names from the task model ap-
pearing in the utterances above, a set of textual templates
(using Java’s formatted printing facilities) has been associ-
ated with goals, actions and decompositions in this model.
Disco also supports an even greater level of customization,
in which a whole phrase can be substituted for another
phrase, which is how the more articulate “It’s too far for me
to swim. There’s a rope though . . . ” has been substituted for
option 1 above.

The fact that all the utterances in the Ice Blocks level are
automatically generated from the simple task model in Fig-
ure 4 suggests a potentially powerful two-step development
methodology: First debug the game design (task model)
with the automatically generated dialogue—think of this as
“programmer dialogue” by analogy with “programmer art.”
Then customize the final dialogue as much as desired.

Plan Recognition
Before leaving this decomposition choice example, it is
worth briefly pointing out another related extra benefit of
using Disco, namely plan recognition. Plan recognition in
general involves inferring implicit goals and decomposition
choices from observed actions. When the player and side-
kick were still on the near shore, the sidekick asked the first
decomposition choice question in the history,“How do you
want to get from the near side to the first island?”, and the
following player menu was generated (a different two de-
compositions were applicable):

1 Let’s get from the near side . . . by swimming
2 Let’s get from the near side . . . by making a bridge
3 Let’s not get from the near side to the first island

However, instead of responding with an utterance on this
occasion the player just pushed an ice block into the water,
and as can be seen in the history, Disco correctly inferred the
decomposition choice. This example again illustrates the ad-
vantage of a non-modal approach to integrating dialogue and
action. For more details on the importance of plan recogni-
tion in collaborative dialogue, see (Lesh, Rich, and Sidner
1999).

D4g Markup Language
Of course, we do not expect all dialogue to be automatically
generated. In fact, the third Secrets level, Shelter, starts with
some traditionally authored dialogue between the player and
sidekick. Figure 6 shows part of the task model for this level.
Due to space restrictions, this figure is probably too small
to easily read the text in each node (all of which appears
again in Figure 7), but the basic structure is clear from the

Figure 6: Part of Task Model for Shelter Level

node shapes, particularly since we have used rectangles to
indicate actions that are utterances.

Notice in Figure 6 that we freely intermix utterances, ac-
tions and goals throughout the model. We use ordering con-
straints (arrows) to guarantee, for example, that a particu-
lar introductory utterance precedes all the actions involved
in achieving some subgoal and that another utterance (per-
haps a snide comment on the quality of the work) is not live
until the subgoal is completed. At each point in the inter-
action, Disco generates, based on the task model and cur-
rent discourse state, both the next utterance or action for the
sidekick and an appropriate menu of authored and gener-
ated utterances for the player. (Certain goals and decom-

positions can be marked “internal only” in the task model,
which means they are never be used in generated utterances.
These are shown as blank nodes in Figure 6.)

Finally, notice that the structure of the first part of the
Shelter task model is really just a traditional dialogue tree,
which is a bit laborious to encode just using ANSI/CEA-
2018. To make this case simpler, we defined a macro exten-
sion, called Disco for Games Markup Language (D4gML),
which is translated down to ANSI/CEA-2018 using Exten-
sible Stylesheet Language Transformations (XSLT). Figure
7 shows the D4gML version of Figure 6.

Like all XML formalisms, D4gML should not be entirely
judged on its human readability in raw form. Typically,
XML formalisms are viewed and edited by humans with
significant tool support. Nevertheless, the structure of the
D4gML description in Figure 7 does mimic the usual inden-
tation conventions of dialogue trees: child elements follow
the parent and sibling elements are choices. Thus, repeated
nesting of elements represents total ordering. D4gML does
not support partial ordering—for this one needs to drop
down into ANSI/CEA-2018.

D4gML and ANSCI/CEA-2018 can be mixed in the same
task model. The D4gML ’do’ element allows D4gML trees
to refer to tasks defined in ANSI/CEA-2018. ANSI/CEA-
2018 can refer to D4gML trees by using the values of
the D4gML ’id’ attribute. D4gML trees can also refer to
D4gML trees using ’id’ values in the ’ref’ attribute.

Game Engine API

Figure 8 shows the information flow involved in connecting
D4g with the Secrets game world, running in Golden T. In
order to keep D4g independent of any particular game en-
gine, all of the code that is specific to Golden T has been
separated into an extension module, called D4g-GT.

<say actor="sidekick"
text="Not so fast. I can\’t walk much further today, and the weather\’s getting worse.">

<say actor="player" text="Okay. What should we do, then?">
<say actor="sidekick" text="We need to build a shelter for the night.">

<say id="Floor"
actor="player" text="Let\’s use pieces of that wreck to build a hut.">

<say actor="sidekick"
text="Okay, the floor is flat already, so what should we build first?">

<say actor="player" text="We need some walls.">
<do task="BuildWalls">

<say actor="sidekick" text="Do we want pillars at the front?">
<say actor="player" text="Sure, let\’s go for it.">

<do id="Roof" task="BuildPillars">
<say actor="sidekick" text="Now all that\’s left is the roof!">
<do task="BuildRoof"/></say></do></say>

<say actor="player" text="No, let\’s not have pillars.">
<say actor="sidekick" ref="Roof"/></say></say></do></say>

<say actor="player" text="Let\’s put in some pillars at the front.">
<do task="BuildPillars">
<say actor="sidekick"

text="They look cool, but we definitely need walls.">
<do task="BuildWalls">
<say actor="sidekick" ref="Roof"/></do></say></do></say></say></say>

<say actor="player" text="We could build an igloo, I guess...">
<say actor="sidekick"

text="Ice pillars, maybe. But we don\’t have time for an igloo.">
<say actor="sidekick" ref="Floor"/></say></say></say></say></say>

Figure 7: Part of Task Model for Shelter Level (Figure 6) in D4g Markup Language

Figure 8: Connecting D4g to a Golden T Game
<task id="Walk">

<input name="to"
type="Packages.edu.wpi.secrets.Area"/>

<postcondition sufficient="true">
world.get("player").getLocation().x

>= $this.to.getWalkToLocation().x
</postcondition>

</task>

Figure 9: Example JavaScript Postcondition

Among other things, D4g-GT contains the Golden T im-
plementation of the UI conventions described earlier for
displaying NPC utterances, displaying and choosing from
player menus, and interacting with objects in the game
world. For example, D4g sends the player utterance choices
to D4g-GT as a list of strings; D4g-GT handles the display
and keyboard interaction, returning the player choice (if any)
as an index into that list. When the player performs an ac-
tion in the game world, for example grabbing the rope, the
corresponding task model action instance (with appropriate
parameters) is created in D4g-GT and sent to D4g. In order
to perform these functions, D4g-GT needs to be part of the
main update loop of the game engine.

The other important connections between D4g and the
game world are via JavaScript. ANSI/CEA-2018 uses
JavaScript for both applicability conditions and postcondi-
tions, and for what are called grounding scripts, which are
used to update the game world for when actions are exe-
cuted. The Java run-time environment makes calling back
and forth between Java and JavaScript very easy.

Figure 9 shows the complete ANSI/CEA-2018 defini-
tion of the Walk action in the Ice Blocks level, which pro-
vides a boolean JavaScript expression as postcondition. The
convention for writing such conditions is that the global
JavaScript variable ’world’ contains a game-specific repre-
sentation of the game world. The type of task parameters in
ANSI/CEA-2018 may be any JavaScript type defined within
the running JavaScript engine, which also includes, via the
’Packages’ syntax, all types defined in the Java environment.
The postcondition of Walk verifies that the x-coordinate of
the player’s location is within the destination area.

Providing postconditions, especially for goals, signfi-
cantly improves the power of a task model in two ways.
First, by defining failure, postconditions allows Disco to au-
tomatically retry a goal with a different decomposition, if
available. Second, by defining success, postconditions al-
low Disco to detect “fortuitous” satisfaction of a goal, i.e.,
when the postcondition of a goal becomes true without any

(or all) of its composite actions being executed. This could
be due to external influences in the game, such as weather,
gravity, passage of time, etc.

Conclusions
We have demonstrated that it is possible to develop a non-
modal entertainment game integrating dialogue and action
in a principled, tool-supported way. The tool we have built,
Disco for Games, in addition to supporting this non-modal
approach, also provides additional benefits, including inter-
ruption handling, automatic dialogue generation, plan recog-
nition and automatic failure retry.

Our initial play testing has indicated that players enjoy
Secrets, but after so much experience with modal interfaces,
it took them a while to grasp the potential of the non-modal
design. A number of technical challenges also remain, such
as a scalable solution to handling simultaneous interactions
with more than two participants (serial interactions with dif-
ferent NPC’s is no problem).

References
Cavazza, M., and Charles, F. 2005. Dialogue generation in
character-based interactive storytelling. In Proc. AAAI Artificial
Intelligence and Interactive Digital Entertainment Conf.
Erol, K.; Hendler, J.; and Nau, D. 1994. HTN planning: Com-
plexity and expressivity. In Proc. 12th National Conf. on Artificial
Intelligence.
Hanson, P. 2010. A unified representation for dialogue and action
in computer games: Bridging the gap between talkers and fighters.
Master’s thesis, Dept. of Computer Science, Worcester Polytechnic
Inst.
Lesh, N.; Rich, C.; and Sidner, C. 1999. Using plan recognition
in human-computer collaboration. In Proc. 7th Int. Conf. on User
Modelling, 23–32.
Lochbaum, K. 1998. A collaborative planning model of intentional
structure. Computational Linguistics 24(4):525–572.
Mateas, M., and Stern, A. 2003. Façade: An experiment in build-
ing a fully-realized interactive drama. In Game Developers Con-
ference. Game Design Track.
Rich, C.; Lesh, N.; Rickel, J.; and Garland, A. 2002. A plug-in
architecture for generating collaborative agent responses. In Proc.
1st Int. J. Conf. on Autonomous Agents and Multiagent Systems.
Rich, C.; Sidner, C.; and Lesh, N. 2001. Collagen: Applying
collaborative discourse theory to human-computer interaction. AI
Magazine 22(4):15–25.
Rich, C. 2009. Building task-based user interfaces with
ANSI/CEA-2018. IEEE Computer 42(8):20–27.
Sidner, C. L. 1994. An artificial discourse language for collabora-
tive negotiation. In Proc. 12th National Conf. on Artificial Intelli-
gence, 814–819.
Skorupski, J.; Jayapalan, L.; Marquez, S.; and Mateas, M. 2007.
Wide ruled: A friendly interface to author-goal based story gener-
ation. In Int. Conf. on Virtual Storytelling, 26–37.
Traum, D.; Rickel, J.; Gratch, J.; and Marsella, S. 2003. Negotia-
tion over tasks in hybrid human-agent teams for simulation-based
training. In Proc. 2ND Int. J. Conf. on Autonomous Agents and
Multiagent Systems, 441–448.

