
2/11/16

1

Professor Charles Rich
Computer Science Department
rich@wpi.edu

CS/IMGD 4100 (C 16) 1

Goal-Driven Agent Behavior

Artificial Intelligence for
Interactive Media and Games

[Based on Buckland, Chapter 9 and lecture by Robin Burke]

Tue, Feb 9 Chapter 9 Goal-Driven Behavior

Wed, Feb 10 8 - My Bot [3%]

Thu, Feb 11 Chapter 9 Goal-Driven Behavior

Fri, Feb 12 Chapter 9 Goal-Driven Behavior

Sun, Feb 14 9- Steal Health [5%]

Mon, Feb 15 Brainstorming: Raven Bot Strategy

Tues, Feb 16 Natural Language and Dialog

Weds, Feb 17 10 - Bot Design [3%]

Fri, Feb 19 Natural Language and Dialog

Sun, Feb 21 (Work on AI Middleware)

Mon Feb 22 Procedural Content Generation

Tue, Feb 23 Procedural Content Generation

Wed, Feb 24 11 - AI Middleware [10%]

Thu, Feb 25 Presentations: AI Middleware

Fri, Feb 26 Presentations: AI Middleware

Sun, Feb 28 (Work on Tournament Bot)

Mon, Feb 29 Chapter 10 Fuzzy Logic

Tue, Mar 1 Special Guest: Damian Isla

Weds, Mar 2 (Due 6pm!) 12 - Tournament Bot [10%]

Thu, Mar 3 Raven Tournament (GH 012)

Fri, Mar 4 Final Exam [30%]

CS/IMGD 4100 (C 16) 2

2/11/16

2

CS/IMGD 4100 (C 16) 3

goals

Outline – 3 Lectures

§  Goals and planning in AI
•  for more, see Russell & Norvig, AI textbook

§  Goal tree execution
•  decomposing and monitoring goals

§  Goal arbitration
•  choosing a toplevel goal

§  Achitecture Extensions / Applications
•  player possession
•  interruptions
•  special path obstacles
•  command queuing
•  scripting

CS/IMGD 4100 (C 16) 4

2/11/16

3

Goals and Planning in AI

§  Goals
•  intuitive and cognitively motivated concept
•  an abstraction (mental state) that guides behavior
•  often formalized as a partial description of a

desired state of the world

CS/IMGD 4100 (C 16) 5

Goal (Mental State) Desired World State
go to the cinema I am at the cinema
attack (given bot) I am firing on the bot

Goals and Planning in AI

§  Desired world state
•  is this the same notion of “state” as in state

machines approach to AI?
–  no, states in FSM are part of mental states of agent
–  states in FSM more analogous to (can be used like) goals
–  some similar implementation features (see later)

•  degrees of formalization
1.  just the name of the goal, e.g., GoToCinema
2.  code/procedure to test if world is in desired state (goal

succeeded) or not (goal failed), e.g., test location
3.  declarative/logical representation (very difficult in

general)

CS/IMGD 4100 (C 16) 6

2/11/16

4

Goals and Planning in AI

§  What is a plan ?
1.  a sequence of actions to achieve a goal, e.g.,

leave the house: [walk to closet, open closet door, remove
coat from coat hook, ...]

–  sequence: totally ordered
–  action: directly executable by agent (changes world state)
–  goal: desired world state

2.  a partially ordered set of actions, e.g.,

CS/IMGD 4100 (C 16) 7

buy sugar

buy flour
mix bake make a cake:

Goals and Planning in AI

§  What is planning ?
•  given a goal
•  construct a plan to change current (or given) world state into

desired world state
•  usually involves search

–  in space of possible plans
•  multiple solutions possible
•  plan may fail, especially if world changes due to other factors

than own actions (e.g., other agents)
•  example: path planning

–  given current and desired location
–  find sequence of movements from here to there

CS/IMGD 4100 (C 16) 8

2/11/16

5

Goals and Planning in AI

§  What is re-planning ?
•  when the current plan for a goal fails

–  you executed all the actions in the plan
–  but the world is not in the desired state L

>  assumes you have some test for failure
–  or some planned action is not executable

>  e.g., cannot open door (because locked)
>  assumes actions have some test for block/failure
>  could be a faulty plan or world changed unexpectedly

•  need to construct another plan for same goal
–  starting with current world state
–  and maybe other constraints based on current failure

CS/IMGD 4100 (C 16) 9

Goals and Planning in AI

§  Alternative to searching for plans ?
•  search can be expensive and error-prone

•  predefine specific plans for particular goals

•  quickly look up plan for goal

•  may be more than one choice (need to decide)

•  can be “manual” or cached from previous (e.g.,
offline) searches

•  already “knowing” a lot of plans for commonly
occurring goals in a domain makes you an “expert”

CS/IMGD 4100 (C 16) 10

2/11/16

6

Hierarchical Plans

•  tree of goals and actions (aka “atomic” or “primitive” goals)
•  child/parent relationship called “subgoal” or “step”
•  actions appear only at leaves
•  all internal nodes are (“composite” / “abstract” / “nonprimitive”) goals
•  subgoals at each level may be totally or partially ordered
•  decomposition can be via planning (search) or predefined

CS/IMGD 4100 (C 16) 11

Traverse Edge

Buy Sword

Get Gold Go To Smithy

Follow Path Pick Up Nugget

Traverse Edge Traverse Edge

Hierarchical Plans

§  when fully expanded (“decomposed”)
•  all leaves are actions
•  leaves constitute a sequential or partially ordered plan

§  often expanded (“decomposed”) incrementally
•  some leaf nodes are not actions
•  not “directly executable” by agent
•  what is directly executable depends on level of modeling
•  not efficient or effective to expand goal nodes before they are “live”,

because
–  will have more information later
–  e.g., to choose between alternative decompositions

CS/IMGD 4100 (C 16) 12

Traverse
Edge

Buy
Sword

Get Gold Go To Smithy

Follow
Path

Pick Up
Nugget

Traverse
Edge

Traverse
Edge

2/11/16

7

Hierarchical Plans

CS/IMGD 4100 (C 16) 13

Hierarchical Plans

§  Hierarchical Task Networks (HTN’s)
•  AI term for predefined library of hierarchical plans
•  the library usually implemented using a declarative

representation

–  e.g., ANSI/CEA-2018 (http://ce.org/cea-2018)

 <task name=“Buy Sword>
 <subtask task=“Get Gold” .../>
 ...
 </task>

CS/IMGD 4100 (C 16) 14

2/11/16

8

Hierarchical Plans

§  “And/Or Tree”

CS/IMGD 4100 (C 16) 15

GoToWork

TakeTrainToWork DriveToWork

WalkToStation RideTrain WalkToOffice DriveToWaypoint ...

have car? don’t have car?

HTN in Raven

CS/IMGD 4100 (C 16) 16

AttackTarget

DodgeSideToSide SeekToPosition HuntTarget

MoveToPosition Explore

SeekToPosition FollowPath

TraverseEdge ...

SeekToPosition

TraverseEdge

FollowPath

...

visible && space
to strafe?

not visible?

last recorded position?

visible && not
space to strafe?

no last recorded position?

2/11/16

9

Goal/Behavior Trees

§  What Buckland describes in Chapter 9 is
essentially a
•  procedural implementation of
•  hierarchical task networks (and/or trees)
•  with totally ordered subgoals

§  This technique is becoming popular in AI
game dev community under the title of
“behavior trees”
•  see http://aigamedev.com/open/article/behavior-trees-part1

CS/IMGD 4100 (C 16) 17

Goal/Behavior Tree Execution Issues

§  choosing a toplevel goal (goal arbitration)
§  choosing among alternative decompositions

of a goal (into subgoals and actions)

§  sequencing of subgoals/actions
§  monitoring of goal completion/failure

§  re-planning after failure

CS/IMGD 4100 (C 16) 18

2/11/16

10

Goal Tree Implementation

§  Same base class used both for composite
and atomic goals (actions)

§  Atomic goals (4) currently in Raven
•  Wander, SeekToPosition, TraverseEdge,

DodgeSideToSide

§  Composite goals (7) currently in Raven
•  Think: special root node (discuss later)
•  Toplevel goals: GetItem(*), AttackTarget, Explore
•  Intermediate goals: MoveToPosition, FollowPath,

HuntTarget

CS/IMGD 4100 (C 16) 19

Key Properties of a Goal

§  Status (enum)
•  inactive – waiting (e.g., due to predecessors not

completed); default initial status
•  active – can be processed on next update
•  completed – will be removed on next update
•  failed – will be re-planned or removed on next update

§  Subgoals (std::list<Goal>)
•  for composite goals only
•  in order of required execution

CS/IMGD 4100 (C 16) 20

2/11/16

11

Key Methods of a Goal

§  Activate
§  Process
§  Terminate

§  HandleMessage

CS/IMGD 4100 (C 16) 21

Goal::Activate

§  Analogous to State::Enter
§  contains initialization code (see Terminate)

§  for atomic steering goals (e.g,. Wander), turns on
steering behavior

§  for composite goals, chooses subgoals (decomposition
method)

§  may be called multiple times for re-planning

§  set status to ‘active’
•  unless cannot decompose (e.g., target no longer exists)

•  then status set to ‘completed’, so goal removed

CS/IMGD 4100 (C 16) 22

2/11/16

12

Goal::Process

§  analogous to State::Execute
§  always starts with ActivateIfInactive()

•  gives Activate method a chance to re-plan

§  for composite goals calls ProcessSubgoals
§  returns goal status

CS/IMGD 4100 (C 16) 23

Goal::Terminate

§  analogous to State::Exit

§  cleanup code before goal destroyed

§  for atomic steering goals, turns off steering
behavior

CS/IMGD 4100 (C 16) 24

2/11/16

13

Goal::HandleMessage

§  analogous to State::HandleMessage
§  for composite goals, check if handled by first

subgoal; otherwise handle self
§  messages only used in goal code for

asynchronous (cf. time slicing) notification
from path finder
•  Msg_PathReady
•  Msg_NoPathAvailable

handled by MoveToPosition and Explore

CS/IMGD 4100 (C 16) 25

Code Walk

§  Start at AbstRaven_Bot “brain”
§  Goal_Composite::ProcessSubgoals
§  Atomic Goals

•  Wander
•  TraverseEdge

§  Composite Goals
•  FollowPath (TraverseEdge subgoals)
•  MoveToPosition (FollowPath subgoal)
•  AttackTarget

§  Run demo with goal tree display on

CS/IMGD 4100 (C 16) 26

2/11/16

14

Goal Arbitration

§  Six toplevel (“strategy”) goals
•  Explore
•  AttackTarget
•  GetItem

–  health
–  rocket launcher
–  shotgun
–  railgun

§  How does bot decide which to pursue at any
given moment? (Only one at a time)

CS/IMGD 4100 (C 16) 27

Goal Evaluators

§  List of evaluators stored in “brain” (Goal_Think)
•  One for each toplevel goal

§  CalculateDesirability method
•  returns value between 0 and 1 (inclusive)
•  evaluated on every update for each goal

–  allows “opportunistic” behavior

•  highest value becomes current goal
–  replaces current goal if different, even if not completed!

•  uses “helper functions”
–  static methods in Raven_Feature
–  each “extracts” useful features from game state
–  features combined with weights to compute desirability

CS/IMGD 4100 (C 16) 28

2/11/16

15

Feature Extractors (0,1)

§  Health(pBot)
•  normalize health range to (0,1)

§  DistanceToItem(pBot, int ItemType)
•  to nearest item of given type
•  if none, return 1

§  IndividualWeaponStrength(pBot, int WeaponType)
•  how much ammo bot has for given weapon type
•  relative to max amount it can carry (return 1)

§  TotalWeaponStrength(pBot)
•  combination of three individual weapon strengths

CS/IMGD 4100 (C 16) 29

GetHealthGoal_Evaluator

§  the farther away health pack is, the less desirable
•  cannot divide by zero, since triggered if inside bounding radius

(and thus doesn’t exist any more)

§  the less healthy, the more desirable
•  if at max health, desirability is zero

§  k is source-level “tweak factor”

CS/IMGD 4100 (C 16) 30

€

Desirabilityhealth = k × 1−Health
DistToHealth
$

%
&

'

(
)

2/11/16

16

GetWeaponGoal_Evaluator

§  the farther away weapon is, the less desirable
§  the less healthy, the less desirable to get weapon
§  the more ammo it has, the less desirable
§  k is source-level “tweak factor”

CS/IMGD 4100 (C 16) 31

€

Desirabilityweapon = k ×
Health × 1−WeaponStrength()

DistToWeapon

$

%
&

'

(
)

Non-Linear Functions

CS/IMGD 4100 (C 16) 32

§  relative “pull” of weapon becomes much stronger as
you get closer

€

Desirabilityweapon = k ×
Health × 1−WeaponStrength()

DistToWeapon2
$

%
&

'

(
)

1/x 1/xn

2/11/16

17

AttackTargetGoal_Evaluator

§  the stronger you feel, the more desirable to attack
•  health
•  total weapon strength

§  k is source-level “tweak factor”

CS/IMGD 4100 (C 16) 33

€

Desirabilityattack = k ×TotalWeaponStrength ×Health

ExploreGoal_Evaluator

§  returns fixed value of 0.05
§  last resort

CS/IMGD 4100 (C 16) 34

2/11/16

18

Bot “Personalities”

§  e.g., cautious versus aggressive
§  Each bot has Lua parameter file with additional

tweak (“bias”) factors for each toplevel goal
§  Easy to multiply in at end of desirability

calculation

CS/IMGD 4100 (C 16) 35

Bot_HealthGoalTweaker = 1.2
Bot_ShotgunGoalTweaker = 0.6
Bot_RailgunGoalTweaker = 0.5
Bot_RocketLauncherTweaker = 0.6
Bot_ExploreTweaker = 0.2
Bot_AggroGoalTweaker = 0.8

(Note inconsistent naming in Burke code L)

Code Walk

§  Goal_Think

§  GetWeaponGoal_Evaluator

§  Run demo with evaluator values displayed.

CS/IMGD 4100 (C 16) 36

2/11/16

19

Homework #9 – Due Sun Midnight

§  Adding a new goal, StealHealth, with
associated evaluator

§  Your bot should collect a health pack even if it
doesn't need it, when there is a nearby
opponent who does need it

§  Detailed instructions online
§  Familiarize you with goal code for tournament

CS/IMGD 4100 (C 16) 37

Architecture Extensions / Applications

§  Player Possession

§  Interruptions

§  Special Path Obstacles

§  Command Queuing

§  Scripting

CS/IMGD 4100 (C 16) 38

2/11/16

20

Player Possession

§  Player “possesses” bot
•  right click once to select
•  right click again to possess
•  sets isPossessed() flag

§  Right click on map to indicate destination
•  adds MoveToPosition goal to brain
•  invokes path planner in Activate method
•  other goal arbitration turned off

CS/IMGD 4100 (C 16) 39

Interruptions

§  Toplevel goal arbitration (desirability evaluation)
“throws away” the current goal when a
“better” (higher scoring) goal is detected
•  a “one-track mind”
•  you might return to the first goal when the new goal is done

(or before)---it all depends on the desirability evaluation at
each tick

•  but there is no memory of previous goal (or its state
information)

•  e.g., AttackTarget, GetHealth, AttackTarget
•  is this good or bad?
•  depends on what?

CS/IMGD 4100 (C 16) 40

2/11/16

21

Interruptions

§  an alternative approach/mechanism
•  which can co-exist with toplevel arbitration
•  when a new goal becomes appropriate

–  as determined by some event or evaluation function
–  e.g., “incoming!”, or “gas tank low”

•  push it onto the front of the lowest level current
subgoal list

•  when the this new goal completes, the original
subgoals (and parents) will continue as before

•  the new goal will function as an interruption

CS/IMGD 4100 (C 16) 41

Interruptions

CS/IMGD 4100 (C 16) 42

2/11/16

22

Interruptions

§  But what if interruption has changed the world state
enough to “break” the plan of the interrupted goal?
•  e.g., defending attacker has taken bot far from planned

waypoint path

§  Plans already need to have code to check for failure
and trigger re-planning (recursively up the goal tree)

§  Conclusion: Our bots are pretty simple and don’t
need interruptions, but a more “cognitively oriented”
game might benefit

CS/IMGD 4100 (C 16) 43

Special Path Obstacles

§  bot calls the moving
platform and rides it
across the pit of
fire...

§  underlying path
edge is specially
marked

§  FollowPath adds
special subgoal
instead of usual
TraverseEdge

CS/IMGD 4100 (C 16) 44

2/11/16

23

Special Path Obstacles

§  Sliding door example in Raven
•  demo

CS/IMGD 4100 (C 16) 45

Command Queuing

§  How about letting the player put subgoals directly into
the tree?
•  gives the player a way to “instruct and forget” an NPC
•  e.g., “attack this house, then take down the flag, then retreat

to meeting area”
•  need some kind of user interface design

§  Navigation waypoint example in Raven
•  holding down ‘Q’ key while clicking right
•  adds MovePosition goal to back of subgoal list (queue)
•  demo

CS/IMGD 4100 (C 16) 46

2/11/16

24

Scripting

§  How about exposing the subgoal lists to Lua
scripting?

CS/IMGD 4100 (C 16) 47

function AddGenie (...)
 genie = CreateGenie(...)
 genie:SayPhrase(“Welcome...”)
 genie:SayPhrase(“Follow me...three wishes...)
 genie:LeadPlayerToPosition(...)
 genie:VanishInPuffOfSmoke
end

Scripting

§  What do you need to do?
•  expose C methods in Lua to add subgoals to

current goal
•  call appropriate Lua method from C Activate

(planning) method of goal
•  optionally expose additional methods to create

objects, etc.

CS/IMGD 4100 (C 16) 48

2/11/16

25

The Road to Tournament

§  Mon, Feb 15: Brainstorming Raven bot strategy

§  Wed, Feb 17: Bot Design (HW #10) due

§  Weds, Mar 2: Tournament bot (HW #12) due 6pm

§  Thu, Mar 3: Raven Tournament (GH 012)

CS/IMGD 4100 (C 16) 49

