10/28/16

State-Driven Agent Design

Artificial Intelligence for
Interactive Media and Games

Professor Charles Rich
Computer Science Department
rich@wpi.edu

[Based on Buckland, Chapter 2 and lecture by Robin Burke]

CS/IMGD 4100 (B 16) 1

Outline for next few days

= Today: State machines
e motivation
e West World state examples
e implementation code
= Tomorrow: Messages
e motivation
e West World message examples
e implementation code
= Tomorrow: Advanced concepts
 hierarchical state machines
¢ non-deterministic state machines (Markov)
= Sun midnight: Homework #2 — Bar Fly
= Before Monday:
¢ Review Chapter 3 (steering)
e Read/prepare Chapter 4 (Simple Soccer)

@) V21 csimep 4100 (8 16) 2

(Finite) State Machines (FSM’s)

= Positive attributes
« standard graphical notation
* good for communication

* still most commonly used Al method in games
* easy to combine with other methods (goals, etc.)

o fast execution

= Often very badly implemented

* “spaghetti’ code (if/then/else, switch, goto) ---
a nightmare to maintain

* we are going to study a clean, generic object-
oriented implementation

7 Ti
() YPI csnmaD 4100 (B 16)

West World

= A “laboratory” for studying FSM’s
* no graphics -- simple plain-text to console
« allows us to study all the code in detail

= Simulation-type game

» 2 characters (agents/NPC): miner Bob and wife Elsa

* Homework #2: add character Sal the bar fly
* 4 |locations: gold mine, bank, saloon, home
* use FSM’s to model their activities

[get to do your own modeling in Homework #3]

Jﬁi//’ Y/ P[csimaeD 4100 (B 16)

10/28/16

Miner State Machine

D EnterMineAndDigForNugge: 75,
Q 7,
<

QuenchThirst
(Saloon)

4

GOHOI’“EAHGSIBQD I llReSteD

Rested

@ Y P[csimaDp 4100 (B 16)

Miner’s Wife State Machine

E/isitBathroomj '?@(z
A
a

e

O

=
2
(all at home) =
c

7

2

&

2

d
[DoHouseworkj

@ Y PI csimaeDp 4100 (B 16)

N n 10 Chance

10/28/16

sa: Walkin' to the can. Need to powda mah pretty li'lle nose
sa: Ahhhhhh! Sweet relief!

: Leavin®' the Jon

a: Washin' the dishes

sa: Makin' the bed

a: Moppin' the floor

a: Washin' the dishes

a: Makin' the bed

/J

/Pl csnMGD 4100 (B 16)

OO0 State Machine Implementation

e

= Each state is an object
* encapsulates all information about the state

* including how it decides which state (if any) to
transition to next

* generic template class, specific classes for game
* design issue: states as singletons?

= Each agent has its own state machine

* generic template class
— current state
— previous state (for “blips”)
— global state (factor out shared code)

@)Y/ Pl csnmap 4100 (B 16)

10/28/16

10/28/16

OO0 State Machine Implementation

= Calling sequence
e game & agent: “update yourself’
e agent & state machine: “update yourself”
» state machine & current state:
“you are being entered for first time”
“execute yourself’

“you are being exited”

/Pl csnmaeDp 4100 (B 16) 9

BaseGameEntity Miner

Update():void ~ ====="] | __] Thirst+=1; %

GetFSM() : StateMachine<Miner>*

Update() : void

ine->Update()

N\
H =
i 5
1 g
PR 8|e
v o
o1
2
5
8
E
ES
3

StateMachine<Miner>

SetGlobalState(State<Miner>*) : void Gl ->Execute(Owner)

Update(): void -===~~~"""""" 7777 CurrentState->Execute(Owner)

ChangeState(State<Miner>*) : void
RevertToPreviousState() : void

)
ER < [
e *
2 & |o
5 B (g
2 L2 = MinerGlobalState
State<Miner>
Enter(Miner*) : void
Enter(Miner*) : void Execute(Miner*) : void
........... Execute(Miner*) : void Exit(Miner*) : void
<<parameter>> | Exit(Miner®) : void Instance() : this
EnterMineAndDig isil AndD: i GoH TilRested QuenchThirst
Enter(Miner*) : void Enter(Miner®) : void Enter(Miner*) : void Enter(Miner*) : void
Execute(Miner®) : void Execute(Miner*) : void Execute(Miner*) : void Execute(Miner*) : void
Exit(Miner*) : void Exit(Miner*) : void Exit(Miner*) : void Exit(Miner*) : void
Instance() : this Instance() : this Instance() : this Instance() : this 10

States as Singletons

= Each state class, e.g., QuenchThirst, has only a
single instance

* Benefit: don't need to manage allocation and
destruction of state objects

* Drawback: since all agents share same state objects,
agent-specific information must be stored in agent
(even if logically associated with only state)

— not a problem in West World, since only one miner, wife with
distinct states

— “non-locality”: adding a new state with agent-specific
information requires editing both state and agent files

— e.g., what if multiple miners and you want to add want to a
RidingHorse state with destination variable?

(@) VYL csimep 4100 (8 16) 1

Singleton Design Pattern

class MyClass
{
private:
MyClassOQ{}
~MyClass QO {}
MyClass(const MyClass&);
MyClass& operator= (const MyClass&);

int m_iNum; // member data

public:
static MyClass* Instance();
int GetVal() const { return m_iNum; } // access data

}

[/ === ———- MyCllass.cpp —=—=---—-—--—-——-—"
MyClass* MyClass::Instance()

{
static MyClass instance;
return &instance;

}
MyClass: :Instance()->GetVal(Q);

@)’//P' CS/IMGD 4100 (B 16) 12

10/28/16

Code Walk

2Ceck Defiizcn Wincow FACa Eroweer BEcckmercc 20,

Y Pl csimMaD 4100 (B 16) 13
Event-Based Architecture
Adding Messaging to the FSM’s
CS/IMGD 4100 (B 16) 14

10/28/16

10/28/16

Messaging — Why?

= Miner and wife in WWwW don’t really interact
e separate state machines running independently
» states could “communicate” by shared variables
— poor modularity
— hard to add new agents which interact with existing

= A solution to the “perception” problem
 avoids expensive polling algorithms (busy-wait)

— e.g., if guard does nothing until player enters room, it should
not be constantly be checking “did player enter” on every
update cycle

— instead, have player send a message to every entity in the
room when she enters the room

= Modern games use messaging extensively

(@) VYL csimep 4100 (8 16) 15

Messaging - Implementation Issues

= Requires unique id registry for every participating
entity
* see BaseGameEntity and EntityRegistry

= Different delivery variations

e point-to-point (messages addressed to specific recipients) --
as in Buckland code

e delayed delivery — as in Buckland code

e broadcast (all messages broadcast to all entities ---
expensive)

e subscription based on
— location (e.g., room)
— message type

@)’//P' CS/IMGD 4100 (B 16) 16

Interaction of States and Messaging

= States receive messages
* via onMessage method
* receiving a message can cause a state change

= Entering/exiting/executing a state can
cause a message to be sent

) VWP csimap 4100 (8 16) ;

Miner’s Wife State Machine (extended)

@) V2L csnmep 4100 (8 16))

10/28/16

West World Message Types

= HiHoneylmHome
¢ sent by Bob to Elsa when entering
GoHomeAndSleepTilRested state

¢ Elsaresponds in WifesGlobalState by changing state to
CookStew

= StewReady

e sent by Elsa to self (with delay) when entering CookStew
state

e Elsaresponds in CookStew state by sending StewReady
message (note reuse) to Bob

e Bob responds in GoHomeAndSleepTilRested state by
changing state to EatStew (blip state)

/// Y P[csimaDp 4100 (B 16) 19

WestWorldWithMessaging Demo

= Various text strings printed to console by Elsa
and Bob at various points, e.g.
e “putting the stew in the oven”
* “smells Reaaal goood Elsa!”

» don’t confuse these “messages” with
MessageType's

= Messaging is programming!
 with all the bugs and debugging

* if a message not handled properly or ignored,
whole simulation can stall

f& Y/ P[csimaeD 4100 (B 16) 20

10/28/16

10

BaseGameEntity

Update() : void
HandleMessage(Telegrams) : bool

I HandleMessage(Telegrams) : bool |--{ et Stebachine.sHndebtessagomse. 5

Update() : void

*

& é|e
g
EntityManager Update() : void if (CumrentState->OnMessage(Owner, msg))
C *) : void retum tre
) Telegrama) : bool --—__| |
yFromID(int): |
a " meg)
RemoveEntity(BaseGameEntity")
retum tre
)
P et fase
A
State<MinersWife>

Enter(MinersWife*) : void
Execute(MinersWife®) : void
Exit(MinersWife®) : void
OnMessage(MinersWife", Telegrame,) : ool

i

WifesGlobalState

VisitBathroom

Enter(MinersWife") : void
Execute(MinersWife*) : void
Exit(MinersWife*) : void
{QnMessagef

(MinersWife*, Telegram) : bool

Enter(MinersWife®) : void
Execute(MinersWife®) : void
Exit(MinersWife*) : void
QoMessage(MinersWife*, Telegrama) : bool

DoHouseWork CookStew

void

Exit(MinersWife*) : void
OnMessage(MinersWife"

Execute(MinersWife®) : void

, Telegrama) : bool

) void
Execute(MinersWife®) : void
Exit(MinersWife*) : void
OnMessage(MinersWife*, Telegram&) : bool

Telegram

Delayed Messages

Discharge(BaseGameEntity*, Telegram&)
[Dispaten(fioat,int, int,int,void*)
DispatchDe)

<<sends message>>

*

21

Code Walk

Focusing on new code added for messaging....

o

e ATeOmrecSlaten | Misssiofan

o gane obje

2002 CLupBa i junkie con)

23R,

NrmOnrebes i Slsh | Shistabirel, Ve Gy

Fritie i)

7 entity miet have a urigue identifying mmber

= next valid T0. Sach time s RasssameEntity

»
i

et vaiid
void setiniize wal);

pubtic

Sasesanckntity (ist i)

“BasecumeBiLity () ()

At an us

ities auet ap wnction

Vel vols Update

i o constcetues n_T

ie snarancisted

ool Rl
na e tha [

22

10/28/16

11

Hierarchical State Machines

= Why?
see trash oto
search gtrash
have trash
trash disposed [goto
disposal
F/J Y P[csimaDp 4100 (B 16) 23

Interruptions (e.g., Alarms)

recharge recharge
/ search / trash

recharged low power recharged low power
[h see trash goto]
Pkl l [trash
have trash

trash disposed goto
_disposal l

6 - doubled the number of states!

recharged low power

(could be reduced to 4 by making

recharge a Buckland “blip” state) (recharge
/ disposal

@) V2L csnmep 4100 (8 16) N

10/28/16

12

Add Another Interruption Type

| hide/search/ I
recharge

all clear battle

C_J)——hide/... }
0 -

:;i—-J) (hide/__)
(hide/....) i {hmeﬁul
(_J——{hider...]

12 - doubled the number of states again!

@) VIP[csimap 4100 (B 16)

25

Hierarchical State Machines

* leave any state in (composite) ‘clean’ state when ‘low power’

* ‘clean’ remembers internal state and continues when returned to
via ‘recharged”

clean

see trash gOtO recharged
search trash I

have trash

trash disposed gOtO
disposal

f/J Y/ P[csimaeD 4100 (B 16)

low power
rechargel

26

10/28/16

13

10/28/16

Add Another Interruption Type

7 states (including composite) vs. 12 | hide/recharge I

battle all clear

low power
recharge I
see trash goto recharged
search trash I

have trash

trash disposed | goto battle
(disposal hide/clean I
27

clean

k I / all clear

NN D[
() YPI csnmaD 4100 (B 16)

Add Another Interruption Type

hide

7 states (including 2 composite)

/ clean \
low power
rechargel
see trash recharged

goto
trash

battle all clear

search

have trash

trash disposed goto
disposal

() VI csnmeD 4100 (B 16) 28

14

Cross-Hierarchy Transitions

= Why?
* suppose we want robot to top-off battery if it
doesn’t see any trash (regardless of power level)

clean

low power
recharge
recharged

see trash

trash disposed

- J

(@) VYL csimep 4100 (8 16) 29

Cross-Hierarchy Transitions

no trash & less than 75% power

clean

low power —
rechargel
see trash goto recharged
.——@mh trash I

have trash

trash disposed goto
disposal

@)’//P' CS/IMGD 4100 (B 16) 30

10/28/16

15

Hierarchical State Machines

= 'Blip' states in Buckland implementation are simple
case (remembers single previous state)

= General case has full push-down stack

= See Millington/Funge Sec. 5.3.9 for more details

/ clean
low power,
see trash] goto recharged
.__.[search]_a[=]

have trash

trash disposed| goto
disposal

recharg;

J

fﬂ Y P[csimaDp 4100 (B 16)

31

Non-deterministic State Machines

» multiple transitions for same event
* label each with probability (2=1)

« state machine randomly chooses at run time,
based on probabilities

* adds variety to actions

* also known as
"Markov Models"

@ Y PI csimaeDp 4100 (B 16)

32

10/28/16

16

Non-deterministic State Machines

= Similar effect achieved in miner's wife states using ad
hoc code rather than general machine

= See Millington/Funge, Sec. 5.6.2 for more details

= Similar variety effect can also be obtained with fuzzy
logic (Chapter 10)

(y Y P[csimaDp 4100 (B 16) 33

Coming up...

= Homework #2 — Bar Fly (due Sun midnight)
 adding another character/agent to West World
* new states and messages

= Study Chapter 3 (steering) on your own

= Start reading (at least first 1/3) of Chapter 4 to
prepare for next three lectures (Simple
Soccer): Mon, Tue and Thu.

@) V21 csimep 4100 (8 16) N

10/28/16

17

