
11/4/14

1

Professor Charles Rich
Computer Science Department
rich@wpi.edu

CS/IMGD 4100 (B 14) 1

Sports Simulation – Simple Soccer

Artificial Intelligence for
Interactive Media and Games

[Based on Buckland, Chapter 4 and lecture by Robin Burke]

Plan for next three weeks (re Soccer)

§  Mon/Tues/Thu: Simple Soccer Anatomy
§  Sun midnite: “My Team” homework due [3 pt]

•  set up code to make modifications
•  study game play carefully to look for improvements

§  Mon: In-class brainstorming
§  Weds midnite: “Team Design” homework due [3 pt]
§  Weds 10pm: “Tournament Team” due [10 pt]

•  10/10 requires adding substantial new strategy

§  Thu Nov. 19: Soccer tournament (KH 203)
•  final grade bonus points for winner and runner-up

CS/IMGD 4100 (B 14) 2

Week Day Book Lecture (with links to notes) Homework (with links)

1 Tue, Oct 28 Intro/Overview/Admin

Wed, Oct 29 1 - Hello West World [3%]

Thu, Oct 30 Chapter 2 State Machines

Fri, Oct 31 Chapter 2 Event Messages

Sun, Nov 2 2 - Bar Fly [5%]

2 Mon, Nov 3 Chapter 4 Simple Soccer Anatomy

Tue, Nov 4 Chapter 4 Simple Soccer Anatomy

Wed, Nov 5 3 - Tank States [5%]

Thu, Nov 6 Chapter 4 Simple Soccer Anatomy

Fri, Nov 7 Futures: AIIDE 2014 Conference Highlights

Sun, Nov 9 4 - My Team [3%]

3 Mon, Nov 10 Brainstorming: Simple Soccer Strategy

Tue, Nov 11 Chapter 6 LUA Scripting

Wed, Nov 12 5 - Team Design [3%]

Thu, Nov 13 Chapter 6 LUA Scripting

Fri, Nov 14 Futures: Neuroevolution of Combat Bots

Sun, Nov 16 6 - Scripting [5%]

4 Mon, Nov 17 Chapter 7 Raven Anatomy

Tue, Nov 18 Chapter 7 Raven Anatomy

Wed, Nov 19 (Due 10pm!) 7 - Tournament Team [10%]

Thu, Nov 20 Soccer Tournament (IMGD or Zoo Lab)

Fri, Nov 21 Futures: TBD

Sun, Nov 23 8 - My Bot [3%]

CS/IMGD 4100 (B 14) 3

(KH 203)

Simple Soccer

§  2D sports simulation (no interactive player)
§  2 teams (“red” and “blue”)
§  5 autonomous agents per team

•  4 field players
•  1 goal keeper

§  1 field (“pitch”)
§  2 goals
§  1 ball

CS/IMGD 4100 (B 14) 4

11/4/14

2

Simple Soccer Demo

§  Red Team: BucklandTeam
§  Blue Team: BurkeTeam
§  Keyboard controls

•  P for pause/resume
•  R for reset (new match)

§  Frame (update) rate
•  default 60 Hz (FrameRate in Params.ini)
•  can slow down to study behavior more closely

§  Match
•  default 5 min (TimeLimit in Params.ini)
•  scoring bonus for using less CPU time (details later)

CS/IMGD 4100 (B 14) 5

 Why?

§  Why should we learn all this complicated,
detailed soccer strategy?
•  this is a course about general techniques for game

AI, not soccer specifically
§  Answer:

•  Because there is no other way to appreciate the
complexity of building a game AI and the software
issues it forces without mastering something
complex.

•  Actually, this is only a start and has lots of room
for improvement---a platform for your own ideas!

CS/IMGD 4100 (B 14) 6

Issues in Simple Soccer

§  Geometry and Physics
•  steering
•  navigation

§  Tiered AI
•  overall team state machine
•  each player has state machine
•  each player has (changing) role in team

–  e.g., pass receiver

•  messaging between players
–  e.g., “pass me the ball”

§  Soccer-specific strategy and design

CS/IMGD 4100 (B 14) 7

Avoiding Perfection

§  Like many other genres (e.g., FPS), AI
opponents in sports simulations must be
beatable
•  AI’s may have inherently weak strategies (e.g,. no

defensive plays in Simple Soccer)
•  explicit fudge factors (e.g., n% of shots go wild)

§  Inaccurate (approximate) physics modeling
•  saves compute time, but causes AI’s to make

mistakes
•  e.g., circles instead of ellipses to calculate

interception in Simple Soccer

CS/IMGD 4100 (B 14) 8

11/4/14

3

“Stats”-Driven Play

§  not illustrated in Simple Soccer

§  individual AI performance governed by
“stats” (e.g., speed, shooting accuracy)

§  interactions between AI’s calculated based on
stat comparisons and random factors

§  typical in reality-based sports games (NBA, etc.)

CS/IMGD 4100 (B 14) 9

§  Soccer Rule Simplifications
•  ball cannot go over heads of players
•  ball rebounds off walls
•  no corners or throw-ins
•  no off-side rules

10 CS/IMGD 4100 (B 14)

11

(Chapter 3)

CS/IMGD 4100 (B 14)

§  As aid to implementing strategies, pitch
divided into 18 regions (numbered 0-17 as
above)

§  Each player has a “home region”
•  starting point for match
•  may change during play

12 CS/IMGD 4100 (B 14)

11/4/14

4

Soccer Ball Physics

§  Three elementary kinematic equations
•  v = u + at
•  d = ut + ½ at2

•  v2 = u2 – 2ad

§  Dynamics: F = ma
§  Acceleration (a) is Friction in Params.ini
§  Soccer ball only checks for collision with pitch

boundaries
•  angle of incidence equals angle of reflection
•  ball moves freely through players “feet”

CS/IMGD 4100 (B 14) 13

Kicking a Soccer Ball

§  In reality:
•  player swings foot toward moving ball
•  force on ball at moment of collision with foot

changes velocity of ball
§  Approximation in game:

•  pretend ball stopped at moment of kick
•  player gives ball fixed initial velocity
•  easier to calculate
•  looks ok

CS/IMGD 4100 (B 14) 14

Soccer Ball Simulation

§  Physics simulation or “game” simulation?

§  Answer: A balance between them

•  enough (approximate) physics to look ok

•  plus other (completely unrealistic) information to
make it easier to implement game, e.g.,

– m_pOwner : a field of ball that points to player that
currently “owns” the ball

CS/IMGD 4100 (B 14) 15 16

(Chapter 3)

11/4/14

5

Player Roles in Soccer Team Class

§  Closest Player to the Ball
•  updated every tick
•  never null

§  Receiving Player
•  waiting to receive kicked ball
•  may be null

§  Controlling Player
•  more contextual: passer, receiver, attacker
•  may be null

§  Supporting Player
•  works with controlling player
•  always defined when controlling player defined

May need to extend these to improve team strategy!
CS/IMGD 4100 (B 14) 17

Scoring Support (Sweet) Spots

§  possible destinations for supporting player in opposing half-pitch
(default 13x6)

§  each dynamically rated for (weights in Params.ini)
•  safe passing (Spot_PassSafeScore)
•  goal scoring potential (Spot_CanScoreFromPositionScore)
•  distance from controlling player (Spot_DistFromControllingPlayerScore)

CS/IMGD 4100 (B 14) 18

SupportSpotCalculator
instance for each team

Code Walk

CS/IMGD 4100 (B 14) 19

Non-agent entities:

•  Soccer pitch
•  Goal
•  Soccer ball
•  Support spot calculator
•  Main loop

Team States (Upper Tier AI)

CS/IMGD 4100 (B 14) 20

Attacking

Defending Prepare..Kickoff

other team
possession

our team
possession

goal scored

goal scored

play starts

[Demo]

11/4/14

6

TeamStates::PrepareForKickoff

§  entered
•  start of match
•  after goal scored

§  sends “GoHome” message to all players
§  waits until all players are home
§  transitions to Defending state

CS/IMGD 4100 (B 14) 21

TeamStates::Defending

§  change home regions to blue (defending) set
§  steers all field players to homes
§  if team gets control, transition to Attacking

CS/IMGD 4100 (B 14) 22

TeamStates::Attacking

§  change home regions to red (attacking) set
§  choose supporting player / spot
§  if team loses control, transition to Defending

CS/IMGD 4100 (B 14) 23

[Code Walk]

FieldPlayerStates::GlobalPlayerState

§  handles messages between players
•  Msg_SupportAttacker
•  Msg_ReceiveBall
•  Msg_GoHome
•  Msg_Wait (not used)

§  and from team to players
•  Msg_GoHome
•  Msg_PassToMe

§  no messages from players to team in this
implementation (could add!)

CS/IMGD 4100 (B 14) 24

11/4/14

7

Field Player States

CS/IMGD 4100 (B 14) 25

ChaseBall

KickBall

ReturnToHR

closest

in range

not closest

at home

Wait

in receiving range

Dribble

can't kick

goal or pass
attempt

can't shoot
or pass

kicked

MSG: ReceiveBall

ReceiveBall SupportAttacker

MSG: GoHome

MSG: SupportAttacker

MSG: Wait
MSG: PassToMe

team lost control

[Demo]

FieldPlayerStates::ChaseBall

§  turn on “seek” steering to ball’s current position

§  if in kicking range, transition to KickBall

§  if no longer closest player, ReturnToHomeRegion

§  turn off “seek” when exiting

CS/IMGD 4100 (B 14) 26

FieldPlayerStates::Wait

§  hold position at current steering target
•  turn on “arrive” steering to return if jostled by

another player (collision avoidance)
§  if upfield of teammate in control, send

Msg_PassToMe to controlling player
§  if closest to ball and no current receiver (and

goalie does not have ball), transition to
ChaseBall

CS/IMGD 4100 (B 14) 27

FieldPlayerStates::ReceiveBall

§  entered in response to Msg_ReceiveBall
•  telegram contains target location of ball
•  at most one player on team in this state

§  choose between “arrive” vs. “pursuit” steering
towards ball
•  always use “arrive” if close to goal or threatened
•  otherwise, random variation

§  if close enough to ball or team loses control,
transition to ChaseBall

CS/IMGD 4100 (B 14) 28

11/4/14

8

FieldPlayerStates::KickBall

§  if max kicks/sec exceeded or goalie has ball,
transition to ChaseBall

§  if CanShoot (see later), Ball()->Kick()
•  random noise, “pot shots”

•  transition to Wait

•  assign supporting player and send Msg_SupportAttacker

§  else if threatened and CanPass (see later)
•  assign receiver and send Msg_ReceiveBall

§  otherwise, transition to Dribble
•  assign supporting player and send Msg_SupportAttacker

CS/IMGD 4100 (B 14) 29

FieldPlayerStates::Dribble

§  turn upfield if necessary (maintaining control
of ball)

§  repeat
•  kick ball short distance
•  transition to ChaseBall
•  which will transition to KickBall
•  which will transition to Dribble

CS/IMGD 4100 (B 14) 30

FieldPlayerStates::SupportAttacker

§  steer (“arrive on”) to selected support spot
•  support spot re-evaluated every update

§  if CanShoot and not threatened, then send
Msg_PassToMe to controlling player (attacker)

§  if cannot request pass, the remain at support
spot and “track” (face) ball

§  if team loses control, transition to
 ReturnToHomeRegion

CS/IMGD 4100 (B 14) 31

[Code Walk]

Goal Keeper

§  always faces ball
•  steering behaviors use velocity-aligned heading
•  special vector m_vLookAt

CS/IMGD 4100 (B 14) 32

11/4/14

9

GoalKeeperStates::GlobalKeeperState

§  handles two messages
•  Msg_GoHome
•  Msg_ReceiveBall

CS/IMGD 4100 (B 14) 33

Goal Keeper States

CS/IMGD 4100 (B 14) 34

TendGoal

InterceptBall PutBall..InPlay

ball within range

pass ball

ReturnHome

too far from goal back at goal or not our
team possession

has ball

has ball

too far from goal
(unless closest to ball)

MSG: GoHome

MSG: ReceiveBall
[Demo]

GoalKeeperStates::TendGoal

§  move laterally, using “interpose” steering to keep body between ball
and rear of goal

§  if ball comes within control range, transition to PutBallBackInPlay

§  if ball comes within intercept range, transition to InterceptBall

CS/IMGD 4100 (B 14) 35

GoalKeeperStates::PutBallBackInPlay

§  send Msg_ReturnHome to all field players
(including opponents!)

§  pass to teammate

§  transition to TendGoal

CS/IMGD 4100 (B 14) 36

11/4/14

10

GoalKeeperStates::InterceptBall

§  steer towards ball using “pursuit”

§  if close enough to trap ball transition to
 PutBallBackInPlay

§  if move too far from goal

•  unless goalie is closest player to ball

•  transition to ReturnHome

CS/IMGD 4100 (B 14) 37

Typical Goal Scored on Keeper

CS/IMGD 4100 (B 14) 38

[Code Walk]

Key AI Methods in AbstSoccerTeam

§  isPassSafeFromAllOpponents

§  CanShoot

§  FindPass

§  GetBestPasstoReceiver

CS/IMGD 4100 (B 14) 39

isPassSafeFromAllOpponents

§  direct pass
•  assume kicked ball speed > max player speed
•  then any player “behind” kicker is safe
•  how to calculate “behind” ?

CS/IMGD 4100 (B 14) 40

11/4/14

11

isPassSafeFromAllOpponents (cont’d)

§  transform to local coordinates of kicker
§  all opponents (e.g., W) with negative x

coordinate are “behind” kick (i.e., safe)

CS/IMGD 4100 (B 14) 41

isPassSafeFromAllOpponents (cont’d)

§  how about opponents beyond receiver (x
coordinate > B), e.g., Q ?

§  if direct pass, then ignore Q
•  why?
•  is that reliable?

CS/IMGD 4100 (B 14) 42

Q

isPassSafeFromAllOpponents (cont’d)

§  how about “side passes” ?

§  for each side target, consider opponents with
x coordinate > target

§  if time to receiver (BQ) is greater than pass
time (AB), then safe

CS/IMGD 4100 (B 14) 43

Q

isPassSafeFromAllOpponents (cont’d)

§  how to eliminate remaining opponents?
§  compute closest (perpendicular) intercept point (e.g., Xp, Yp)
§  compare time for ball vs. opponent to reach intercept point

•  adjustment for ball size and capture distance
•  ignoring time for opponent to rotate

CS/IMGD 4100 (B 14) 44

11/4/14

12

CanShoot

§  choose random points along back of goal
§  check that not too far (force vs. friction)
§  call isPassSafeFromAllOpponents

CS/IMGD 4100 (B 14) 45

FindPass

§  call GetBestPassToReceiver on each
teammate beyond MinPassingDistance

§  choose teammate who can safely receive
pass that is furthest upfield

CS/IMGD 4100 (B 14) 46

GetBestPassToReceiver

§  eliminate if receiver too far (force vs. friction)
•  doesn’t consider receiver running toward passer

§  consider “side passes”

CS/IMGD 4100 (B 14) 47

GetBestPassToReceiver (cont’d)

§  compute range (dotted circle) of receiver within time
duration of pass
•  using time duration to current receiver position
•  reduce range to 30% to allow safety margin (turning, etc.)

§  side pass targets are ip1 and ip2
•  check that inside pitch
•  call isPassSafeFromAllOpponents

CS/IMGD 4100 (B 14) 48

11/4/14

13

Code Walk

§  isPassSafeFromAllOpponents

§  CanShoot

§  FindPass

§  GetBestPassToReceiver

CS/IMGD 4100 (B 14) 49

Params.ini

§  you might think that the name on each line identifies
the variable that is set

WRONG

§  you might think that the variables can be listed in any
order

WRONG

§  ParamLoader.h

CS/IMGD 4100 (B 14) 50

...
// weights used to calculate the support spots
Spot_PassSafeScore 2.0
Spot_CanScoreFromPositionScore 1.0
Spot_DistFromControllingPlayerScore 2.0
...

Parameter File Loading

§  We’ll see a much better version of this using
Lua in Raven code
•  any order
•  add variables
•  use expressions as values

CS/IMGD 4100 (B 14) 51

“Strategic” Parameters

CS/IMGD 4100 (B 14) 52

// scoring values for support spots
Spot_CanPassScore 2.0
Spot_CanScoreFromPositionScore 1.0
Spot_DistFromControllingPlayerScore 2.0

// when an opponent comes within this range the player will attempt to
// pass (the higher the value, the more often players tend to pass)
PlayerComfortZone 60.0

// minimum distance a receiving player must be from the passing player
MinPassDistance 120.0

11/4/14

14

“Strategic” Parameters (cont’d)

CS/IMGD 4100 (B 14) 53

// minimum distance a player must be from the goalkeeper before it will
// pass the ball
GoalkeeperMinPassDistance 50.0

// the distance the keeper puts between the back of the net
// and the ball when using the interpose steering behavior
GoalKeeperTendingDistance 20.0

// when the ball becomes within this distance of the goalkeeper he
// changes state to intercept the ball
GoalKeeperInterceptRange 100.0

// how close the ball must be to a receiver before he starts chasing it
BallWithinReceivingRange 10.0

Making Buckland’s Code “Multi-User”

§  To support tournament play

§  Factory pattern for teams

§  Unsolved problems:

•  reusing states

•  changing parameters

CS/IMGD 4100 (B 14) 54

Factory Pattern

§  Goal: decide at run-time (e.g., by loading
info from Params.ini) which team class to
make an instance of
•  avoid directly calling “new” with class name in

game initialization code
§  Solution:

•  define an abstract class (AbstSoccerTeam)
•  with a “factory method” (makeTeam)
•  use inheritance/polymorphism

CS/IMGD 4100 (B 14) 55

Factory Pattern

CS/IMGD 4100 (B 14) 56

[singleton registry] TeamMaker->newTeam(“BurkeTeam”)

 ê

[singleton factory] BurkeSoccerTeamMaker->makeTeam(...)

 ê

[subclass AbstSoccerTeam] new BurkeSoccerTeam(...)

11/4/14

15

What’s Not Solved

§  All the states need to be copied
•  why?

§  Changed values in Params.ini need to be
replaced at point of reference
•  why?

G.J. Sussman: “The flexibility of a unit of code is
directly proportional to the number of levels of
indirection it uses.”

CS/IMGD 4100 (B 14) 57

Coming up...

§  Fri-Sun: Study Buckland Team Behavior

§  Sunday: My Team Homework Due

§  Mon: Brainstorming in Class

§  Weds: Team Design Homework Due

§  Weds 10pm: Tournament Team Homework Due

CS/IMGD 4100 (B 14) 58

