
Professor Charles Rich
Computer Science Department
rich@wpi.edu

CS/IMGD 4100 (B 14) 1

State-Driven Agent Design

Artificial Intelligence for
Interactive Media and Games

[Based on Buckland, Chapter 2 and lecture by Robin Burke]

Outline (2 days)

§  State machines
•  motivation
•  West World state examples
•  implementation code

§  Messages
•  motivation
•  West World message examples
•  implementation code

§  Advanced concepts
•  hierarchical state machines
•  non-deterministic state machines (Markov)

§  Homework #2 – Bar Fly (due Sunday midnight)
§  Review Chapter 3 (steering)
§  Read/prepare Chapter 4 for next week (Simple Soccer)

CS/IMGD 4100 (B 14) 2

(Finite) State Machines (FSM’s)

§  Positive attributes
•  standard graphical notation
•  good for communication
•  still most commonly used AI method in games
•  easy to combine with other methods (goals, etc.)
•  fast execution

§  Often very badly implemented
•  “spaghetti” code (if/then/else, switch, goto) ---

a nightmare to maintain
•  we are going to study a clean, generic object-

oriented implementation

CS/IMGD 4100 (B 14) 3

West World

§  A “laboratory” for studying FSM’s
•  no graphics -- simple plain-text to console
•  allows us to study all the code in detail

§  Simulation-type game
•  two characters (agents): miner Bob and wife Elsa
•  next homework: add character Sal the bar fly
•  four locations: gold mine, bank, saloon, home
•  use FSM’s to model their activities

[get to do your own modeling in Homework #3]
CS/IMGD 4100 (B 14) 4

Miner State Machine

CS/IMGD 4100 (B 14) 5

(Saloon)

Miner’s Wife State Machine

CS/IMGD 4100 (B 14) 6

(all at home)

CS/IMGD 4100 (B 14) 7

OO State Machine Implementation

§  Each state is an object
•  encapsulates all information about the state
•  including how it decides which state (if any) to

transition to next
•  generic template class, specific classes for game
•  design issue: states as singletons?

§  Each agent has its own state machine
•  generic template class

–  current state
–  previous state (for “blips”)
–  global state (factor out shared code)

CS/IMGD 4100 (B 14) 8

OO State Machine Implementation

§  Calling sequence

•  game è agent: “update yourself”

•  agent è state machine: “update yourself”

•  state machine è current state:

“you are being entered for first time”

“execute yourself”

“you are being exited”

CS/IMGD 4100 (B 14) 9

*

*

10

States as Singletons

§  Each state class, e.g., QuenchThirst, has only
a single instance
•  Benefit: don't need to manage allocation and

destruction of state objects
•  Drawback: since all agents share same state

objects, agent-specific information must be stored
in agent (even if logically associated with state,
e.g., thirst)

–  not a problem in West World, since only one miner, wife
with distinct states

–  adding a new state with agent-specific information
requires editing both state and agent files

CS/IMGD 4100 (B 14) 11

Singleton Design Pattern

CS/IMGD 4100 (B 14) 12

// ------------- MyClass.h -------------------
class MyClass
{
private:
 MyClass(){}
 ~MyClass(){}
 MyClass(const MyClass&);
 MyClass& operator= (const MyClass&);

 int m_iNum; // member data

public:
 static MyClass* Instance();
 int GetVal() const { return m_iNum; } // access data
}

// ------------- MyClass.cpp -------------------
MyClass* MyClass::Instance()
{
 static MyClass instance;
 return &instance;
}

MyClass::Instance()->GetVal();

Code Walk

CS/IMGD 4100 (B 14) 13

CS/IMGD 4100 (B 14) 14

Event-Based Architecture

Adding Messaging to the FSM’s

Messaging – Why?

§  Miner and wife in WWwW don’t really interact
•  separate state machines running independently
•  states could “communicate” by shared variables

–  poor modularity
–  hard to add new agents which interact with existing

§  A solution to the “perception” problem
•  avoids expensive polling algorithms (busy-wait)

–  e.g., if guard does nothing until player enters room, it should
not be constantly be checking “did player enter” on every
update cycle

–  instead, have player send a message to every entity in the
room when she enters the room

§  Modern games use messaging extensively

 CS/IMGD 4100 (B 14) 15

Messaging - Implementation Issues

§  Requires unique id registry for every participating
entity
•  see BaseGameEntity and EntityRegistry

§  Different delivery variations
•  point-to-point (messages addressed to specific recipients) --

as in Buckland code
•  delayed delivery – as in Buckland code
•  broadcast (all messages broadcast to all entities ---

expensive)
•  subscription based on

–  location (e.g., room)
–  message type

CS/IMGD 4100 (B 14) 16

Miner’s Wife State Machine (extended)

CS/IMGD 4100 (B 14) 17

West World Message Types

§  HiHoneyImHome
•  sent by Bob to Elsa when entering

GoHomeAndSleepTilRested state
•  Elsa responds in WifesGlobalState by changing state to

CookStew

§  StewReady
•  sent by Elsa to self (with delay) when entering CookStew

state
•  Elsa responds in CookStew state by sending StewReady

message (note reuse) to Bob
•  Bob responds in GoHomeAndSleepTilRested state by

changing state to EatStew (blip)

CS/IMGD 4100 (B 14) 18

WestWorldWithMessaging Demo

§  Various text strings printed to console by Elsa
and Bob at various points, e.g.
•  “putting the stew in the oven”
•  “smells Reaaal goood Elsa!”
•  don’t confuse these “messages” with

MessageType’s

§  This is programming!
•  with all the bugs and debugging
•  if a message not handled properly or ignored,

whole simulation can stall

CS/IMGD 4100 (B 14) 19

20

Code Walk

CS/IMGD 4100 (B 14) 21

Focus on new code added for messaging....

Hierarchical State Machines

§  Why?

CS/IMGD 4100 (B 14) 22

search

goto
disposal

goto
 trash

see trash

trash disposed

have trash

Interruptions (e.g., Alarms)

CS/IMGD 4100 (B 14) 23

search

goto
disposal

goto
 trash

see trash

trash disposed

have trash

recharge
/ search

low power recharged

recharge
/ trash

low power recharged

recharge
/ disposal

low power recharged
6 - doubled the number of states!

(could be reduced to 4 by making
recharge a Buckland “blip” state)

Add Another Interruption Type

CS/IMGD 4100 (B 14) 24

hide/search/
recharge

battle all clear

hide/...

hide/...

hide/...

hide/...
hide/...

12 - doubled the number of states again!

Hierarchical State Machines

CS/IMGD 4100 (B 14) 25

search

goto
disposal

goto
 trash

see trash

trash disposed

have trash

clean

recharge
low power

recharged

•  leave any state in (composite) ‘clean’ state when ‘low power’

•  ‘clean’ remembers internal state and continues when returned to
via ‘recharged’’

CS/IMGD 4100 (B 14) 26

Add Another Interruption Type

search

goto
disposal

goto
 trash

see trash

trash disposed

have trash

clean
recharge/
clean

low power

recharged

hide/clean
battle

all clear

7 states (including composite) vs. 12

battle all clear

hide
/recharge/clean

CS/IMGD 4100 (B 14) 27

Add Another Interruption Type

search

goto
disposal

goto
 trash

see trash

trash disposed

have trash

clean

recharge
low power

recharged

7 states (including 2 composite)
battle all clear

hide

CS/IMGD 4100 (B 14) 28

Cross-Hierarchy Transitions

§  Why?
•  suppose we want robot to top-off battery if it

doesn’t see any trash (regardless of power level)

search

goto
disposal

goto
 trash

see trash

trash disposed

have trash

clean
recharge

low power

recharged

CS/IMGD 4100 (B 14) 29

Cross-Hierarchy Transitions

search

goto
disposal

goto
 trash

see trash

trash disposed

have trash

clean

recharge
low power

recharged

no trash & less than 75% power

Hierarchical State Machines

§  'Blip' states in Buckland implementation are simple
case (remembers single previous state)

§  General case has full push-down stack

§  See Millington Sec. 5.3.9 for more details

CS/IMGD 4100 (B 14) 30

search

goto
disposal

goto
 trash

see trash

trash disposed

have trash

clean

recharge
low power

recharged

Non-deterministic State Machines

CS/IMGD 4100 (B 14) 31

Start

Approach

Aim &
Jump &
Shoot

Aim &
Slide Left
& Shoot

Aim &
Slide Right

& Shoot .3
.3

.3

.3
.3

.4

•  multiple transitions for same event
•  label each with probability (Σ=1)
•  state machine randomly chooses at run time,

 based on probabilities
•  adds variety to actions

.1

Non-deterministic State Machines

§  Also known as "Markov Models"
§  Similar effect achieved in miner's wife states using ad

hoc code rather than general machine

§  See Millington, Sec. 5.5.2 for more details
§  Similar variety effect can also be obtained with fuzzy

logic (Chapter 10)

CS/IMGD 4100 (B 14) 32

VisitBathroom DoHouseWork

.9

.1

Coming up...

§  Homework #2 – Bar Fly (due Sunday
midnight)

•  adding another character/agent to West World

•  new states and messages

§  Study Chapter 3 (steering) on your own

§  Start reading (at least first 1/3) of Chapter 4 to
prepare for next week (Simple Soccer): Mon,
Tues, & Thurs

CS/IMGD 4100 (B 14) 33

