Natural Language and Dialog

Artificial Intelligence for Interactive Media and Games

Professor Charles Rich
Computer Science Department
rich@wpi.edu

Outline

- Computational theory of human language and dialog
 - background
 - terminology
- Language and dialog in games
 - current common industry practice
 - emerging trends
- Speech

What is Dialog?

- a conversation between two participants
 - verbal communication
 - spoken or written
 - at least two turns
 - each turn consists of one or more utterances
 - not necessarily complete sentences
 - backchannels (uh-huh), overlapping, interruptions
 - what about more than two participants?
 - more complex turn-taking rules
 - dialog is a two-person discourse
- in a shared context
 - not just any random utterances
 - e.g., a story or collaboration

What is the Purpose of Dialog?

- contributes to participants’ goals in the context
 - example
 - my goal (desired world state) is for the window to be open
 - I say “Please open the window” to person standing next to the window
 - if person is cooperative, she says “Ok”
 - she opens the window
 - is it still a dialog if she skips saying “Ok”?
 - yes, if she opens the window (nonverbal response)
 - notice interleaving.coordination of communication (utterances) and action (world state changes)
Cognitive Modeling of Dialog

Goal(WindowOpen)

"Please open the window"

Goal(WindowOpen)

"Ok"

Goal(WindowOpen)

What is the Immediate Purpose of Dialog?

- the speaker is trying to achieve a change in the mental state of the hearer, including:
 - emotional state
 - "your mother wears army boots"
 - "I love you"
 - beliefs
 - "roses are red"
 - "I'm scared"
 - goals (intentions)
 - "please open the window"
 - "don’t look in there"

What about Questions?

- “What time is it?”
 - speaker’s goal is to change his own mental state
 - to one in which he knows the time
 - speaker could achieve goal by looking at clock
 - but if no clock, can achieve goal indirectly
 - by changing mental state of hearer (with wrist watch)
 - to include goal of telling speaker the time
 - e.g., “Please tell me the time.”

Levels of Language Representation

0. Sound Waves (Speech)
1. Words (Surface Form)
2. Syntax
3. Semantics
4. Pragmatics

many-to-one mappings from each level to next
- multiple surface forms with same syntax
- multiple syntactic forms with same semantics
- etc.
1. Surface Form (Realization)

- The sequence of words that are actually written, read, spoken or heard.
- Two utterances, e.g., in two different languages, may differ only in their surface forms:
 - *English*: “the roses are red”
 - *French*: “les roses sont rouges”
- Or even in the *same* language:
 - *Active*: “John kissed Mary”
 - *Passive*: “Mary was kissed by John”

2. Syntax

- Parsing (“diagramming”) a sentence in terms of:
 - *part of speech tags*: adjective, preposition, noun, etc.
 - *syntactic roles*: subject, verb, (direct/indirect) object, etc.

 \[
 \text{art} \quad \text{adj} \quad \text{adj} \quad \text{n} \quad \text{v} \quad \text{prep} \quad \text{art} \quad \text{adj} \quad \text{n}
 \]

- “The quick brown fox jumped over the lazy dog.”

 \[
 (S \quad [NP \text{The quick brown fox}] \quad [VP \text{jumped} \quad [PP \text{over} \quad [NP \text{the lazy dog}]]])
 \]

3. Semantics

- The *meaning* of a sentence *in isolation*
- Much less standardized than syntax
 - frame-based semantics
 - logical (axiomatic) semantics
 - probabilistic semantics
 - etc., etc.
- Two sentences with different surface form and different syntax may have *same* semantics:
 - “John kissed Mary.”
 - \[S \quad [NP \text{John}] \quad [VP \text{kissed} \quad [NP \text{Mary}]]\]
 - “Mary was kissed by John.”
 - \[S \quad [NP \text{Mary}] \quad [VP \text{was kissed} \quad [PP \text{by} \quad [NP \text{John}]]]\]
- frame semantics:
 - \{(action: kiss, agent: John, theme: Mary, time: past)\}

4. Pragmatics

- *Everything else* about how the utterance functions in its *context*
- Even less standardized than semantics
 - E.g., goal/belief modification semantics

 \[
 \text{Goal(WindowOpen)} \quad \text{Goal(WindowOpen)} \quad \text{Goa} \quad \text{Goal(WindowOpen)} \quad \text{Goal(WindowOpen)}
 \]

 “Please open the window”

 \[
 \text{Goal(WindowOpen)} \quad \text{Goal(WindowOpen)} \quad \text{Goal(WindowOpen)} \quad \text{Goal(WindowOpen)}
 \]

 “Ok”
(Spoken) Language Understanding

- Start with (sound wave or) words
- Compute pragmatic function

Speech Recognition

Speech Understanding

- (Perhaps) mapping through syntactic and semantic forms along the way...

Language Generation

- Start with pragmatic (deep) representation
- Output surface form

- (Perhaps) mapping through semantic and syntactic form along the way...

State of the Art in Academic Research

- unrestricted language (speech) understanding input
- constrained domain
- full syntactic parsing, semantic interpretation
- pragmatics
- general-purpose language generation

State of the Art in Academic Research

- unrestricted (spoken) language understanding input
- constrained domain
- statistical approach
- canned language generation (voice acting)
Language Understanding Challenges

- **Coverage**
 - you can make almost anything work if you restrict the domain enough
 - know all the words that will be used
 - know all the purposes (pragmatics)
 - e.g., airline reservation system
 - but not the Turing Test

- **Semantics**
 - lack of agreement inhibits generalization and sharing of results

Language Generation Challenges

- **Expressiveness**
 - how to say the same thing with different styles, emotional content, etc.
 - e.g., “Hello” vs. “Yo, dude”
 - need computational theory which separates style and content [cf. AIIDE 2011 paper]

- **Coherence**
 - generation needs to have wider window than single utterance
 - planning a sequence of utterances (anaphora, etc.)

Dialog in Games

- In what genres is dialog most important?
 - role playing games (RPG)
 - text adventure (interactive fiction - IF)
 - first person shooters (FPS)
 - real-time strategy (RTS)
 - sports? casual? serious? ...

Dialog between Whom?

- **player ↔ NPC**
 - main challenge and research focus
 - “dialog trees” commonly used

- **NPC ↔ NPC**
 - player is bystander

- **player ↔ player**
 - e.g., in MMO’s
 - no problem for humans on both ends
 - system/NPC as bystander?
Player-NPC Dialog

- Two computational problems to solve
 - generating NPC utterances
 - understanding player utterances

- Dialog trees
 - common solution to *both at the same time*
 - all possible player and NPC utterances authored in advance
 - decision tree based on user choices

Dialog Trees

```
Speak("Welcome stranger. What brings thee among us gentle folk?")
reply = player.SpeakOption(1, "Yo dude, wazzup?", 2, "I want your money, your woman and that chicken")
if reply == 1 then
  Speak("Wazzuuuuup!")
else if reply == 2 then
  Speak("Well, well. A fight ye wants, is it? Ye can’t just go around these parts demandin’ chickens from folk. Yer likely to get that ugly face smashed in. Be off with thee!")
end
```

[From Buckland, Chapter 6]

Advantages

- fast & flexible – code can do anything
- reliable – no misunderstandings
- expressive – author has complete control to create desired style, character, atmosphere, etc.

Disadvantages

- restricts player
- very labor intensive
- doesn’t scale well to complex interactions
 - must keep variability down to keep labor down
 - leads to lack of replayability
 - can help somewhat by designing special editors and engines for executing dialog trees

Morrowind (TES) Dialog Editor

- database of utterances
 - organized around extensible set of “topics”
 - each utterance has conditions and results
 - including menu choices
 - simple templating via variables (name, etc.)
 - sort of like programming a rule-based system

http://tommyshideout.net/files/srikandi/DialogueTut
Text Adventure Games

also called “interactive fiction” (IF)
- confusing with “interactive drama” and “interactive storytelling”

started with Adventure in 1975
- Infocom's Zork series in 70's and 80's

Interactive Fiction Competition (2008)
- restricted syntax and semantics
 - few hundred standard verbs
 - open-ended nouns
 - simple (learned) command syntax
 - highly evolved set of ad hoc techniques

Text Adventures Games

>WAIT
Time passes...

The scooter glides into the station's docking port. The retro-thrusters bring the scooter to a halt. As the docking port fills with air the scooter's hatch opens.

>LOOK
Scooter, in the pilot's couch
You are in the cramped one-man space scooter. Through the viewport, you see the docking port of Space Station BG-12. The scooter's hatch is open.
You can see a toolbox here.

>OPEN THE TOOLBOX
You can't reach it from the pilot's couch.

>STAND UP
You are standing again.

>OPEN THE TOOLBOX
It's locked.

>LEAVE THE SCOOTER
Docking Port
This is the huge docking port of the space station. Only one ship is here at the moment, a one-man scooter, so the docking port seems unusually empty. A tube leads down toward the heart of the station,

>DOWN
Main Hallway, Sector M
This is the station's main corridor, which continues to port and starboard. A tube leads up toward the docking port.
Emerging Trends in Game Dialog

- Natural language understanding
 - replacing fixed menu choices
 - give player more flexibility to express herself
- Natural language generation
 - generating NPC utterances procedurally
 - reduces authoring labor
- Speech

Façade

- State of the art in experimental game NLU
 - unrestricted text input
 - micro-domain (very constrained)
 - go directly from surface form to pragmatic effect
 - broad, shallow, author-intensive techniques
 - cheating strategies when doesn’t understand

Façade – Surface Text Rules

- word spotting and pattern matching rules
 - dialog acts (pragmatic)
 - ("hello" | "hi") ["there"] ➔ Hello
 - "grace" ➔ Character(Grace)
 - Hello && Character(?char) ➔ Greet(?char)
- example dialog acts:
 - Agree(?char), Disagree(?char)
 - Express(?char, ?emotion)
 - ReferTo(?char, ?object)

ANDI-Land

- restricted natural language text input
 - using context-free grammar
 - shows user possible syntactic completions as player types
 - underlying logical theorem-prover
 - all output generated procedurally

http://www.interactivestory.net
(2005)

http://www.andi-land.com
“Logical Agents for Language and Action”,
M. Magnusson & P. Doherty,
Linkoping U., Sweden, AIIDE’08
Magni: “Who owns the axe?”

- parsing
 [S Who [VP owns [NP the axe]]]
- semantic interpretation
 informRef(magni, value(12:15, owner(axe)))
- theorem proving
 inform(magni, ld(value(12:15, owner(axe)), smith))
- reversible grammar

Smith: “I own the axe.”

Magni: “Sell the axe to me.”

- parsing
 [S [VP sell [NP the axe] [PP to me]]]
- semantic interpretation
 ∃t1,t2 [Occurs(smith, (t1,t2), sell(axe, magni))]
- theorem proving
 Committed(smith, t1, Occurs...) ∧
 Executable(smith, (t1,t2), sell(axe,magni)) ∧
 Believes(smith, t1, ActionId(sell(axe, magni), sell(axe, magni))) ⇒
 Occurs(smith, (t1,t2), sell(axe, magni)))

Natural Language Generation

- Generating NPC to NPC dialog for Interactive Storytelling
 - no pre-authored dialog
 - situations generated by autonomous planning agents
 - using logic and templates to generate surface forms

Speech

- Speech recognition
- Speech generation
- Speech in games
 - experiments with player speech input
 - NPC speech output almost always recorded
Speech Recognition

- widely available commercial systems
 - all based on HMM (Hidden Markov Models) trained on large corpora
 - built into Mac Leopard, Windows Vista, iPhone 4S
- easier vs. harder versions
 - isolated word vs. continuous
 - speaker trained vs. speaker independent
 - small vs. large vocabulary
 - grammar-based vs. dictation
 - push-to-talk vs. open-microphone (keyword spotting)

Speech Generation

- text to speech
- widely available commercial systems
 - many different “voices”
 - never sounds as good as recorded voices
 - built into Mac Leopard, Windows Vista, iPhone 4S
- two approaches
 - concatenative
 - chops up and stitches back together recorded voices
 - usually sounds pretty good
 - a lot of labor to produce each voice
 - model-based
 - uses mathematical model of vocal tract
 - easy to adjust parameters to get different voices
 - less natural sounding

Emotional Speech Generation

- research of Catherine Pelachaud
- same words but different sounds (and gestures) for different emotional states

Lifeline

- Sony 2003
- single word commands
- not too successful
Clancy's EndWar

- Ubisoft 2009
- Andi-Land style menu, but using voice

Mass Effect 3

- Ubisoft 2011
- Kinect voice recognition
- Voice selection from regular dialog menus

Alelo Tactical Language

- 2008 spinoff of USC research
- Very successful serious game

http://tacticallanguage.com

Summary

- Natural language and dialog in games
 - Academic research techniques mature
 - A lot of interest at points of overlap between academia and industry (e.g., AIIDE)
 - Initial experimentation in games mixed
 - Potential for breakthrough application in games in next few years