
11/10/11

1

Professor Charles Rich
Computer Science Department
rich@wpi.edu

IMGD 4100 (B 11) 1

To Script, or Not Script,
That is the Question

Artificial Intelligence for
Interactive Media and Games

[Based on Buckland, Chapter 6 and lecture by Robin Burke]

Outline

§  Scripting

§  Lua Language

§  Connecting Lua and C++ (LuaBind)

§  Scripted State Machine

§  Scripting Homework (due Sunday)

IMGD 4100 (B 11) 2

Scripting

§  Two senses of the word
•  “scripted behavior”

–  having agents follow pre-set actions
–  rather than choosing them dynamically

•  “scripting language”
–  using a dynamic language
–  to make the game easier to modify

§  The senses are related
•  a scripting language is good for writing scripted

behaviors (among other things)

IMGD 4100 (B 11) 3 IMGD 4100 (B 11) 4

Scripted Behavior

§  One way of building AI behavior

§  What’s the other way?

§  Versus simulation-based behavior

•  e.g., goal/behavior trees

•  genetic algorithms

•  machine learning

•  etc.

11/10/11

2

Scripted vs. Simulation-Based AI Behavior

§  Example of scripted AI behavior
•  fixed trigger regions

– when player/enemy enters predefined area

–  send pre-specified waiting units to attack

•  doesn’t truly simulate scouting and preparedness

•  player can easily defeat one she figures it out
– mass outnumbering force just outside trigger area

–  attack all at once

IMGD 4100 (B 11) 5

Scripted vs. Simulation-Based AI Behavior

§  Non-scripted (“simulation-based”) version
•  send out patrols

•  use reconnaissance information to influence unit
allocation

•  adapts to player’s behavior (e.g., massing of
forces)

•  can even vary patrol depth depending on stage of
the game

IMGD 4100 (B 11) 6

Advantages of Scripted AI Behavior

§  Typically less computation
•  apply a simple rule, rather than run a complex

simulation

§  Easier to write, understand and modify
•  than a sophisticated simulation

IMGD 4100 (B 11) 7

Disadvantages of Scripted AI Behavior

§  Limits player creativity
•  players will try things that “should” work (based on

their own physical intuitions)
•  will be disappointed when they don’t

§  Allows degenerate strategies
•  players will learn the limits of the scripts
•  and exploit them

§  Games will need many scripts
•  predicting their interactions can be difficult
•  complex debugging problem

IMGD 4100 (B 11) 8

11/10/11

3

Stage Direction Scripts

§  Controlling camera movement and “bit players”
–  create a guard at castle drawbridge
–  lock camera on guard
– move guard toward player
–  etc.

§  Better application of scripted behavior than AI
logic
•  doesn’t limit player creativity as much
•  improves visual experience

§  Can also be done by sophisticated simulation
•  e.g., camera system in God of War

IMGD 4100 (B 11) 9 IMGD 4100 (B 11) 10

Scripting Languages

You can probably name a bunch of them:

§  custom languages tied to specific games/engines
•  UnrealScript, QuakeC, HaloScript, LSL, ...

§  general purpose languages
•  Tcl, Python, Perl, Javascript, Ruby, Lua, ...
•  the “modern” trend, especially with Lua

Often (mostly) used to write scripted (AI) behaviors.

Scripting Languages
§  Easier to learn and use to write small

procedures than C++
•  dynamically typed
•  garbage collected
•  simpler syntax

§  Slower to execute (becoming less relevant with
 JIT compilation)

§  Many popular applications and languages
•  robotics (Python)
•  web pages (JavaScript)
•  system administration (Perl)
•  etc.
IMGD 4100 (B 11) 11

Scripting Languages in Games

§  A divide-and-conquer strategy
•  implement part of the game in C++

–  the time-critical inner loops

–  code you don’t change very often

–  requires complete (long) rebuild for each change

•  and part in a scripting language
–  don’t have to rebuild C++ part when change scripts

–  code you want to evolve quickly (e.g, AI behaviors)

–  code you want to share (with designers, players)

–  code that is not time-critical (can migrate to C++)

–  parameter files (cf. Raven Params.ini)
IMGD 4100 (B 11) 12

11/10/11

4

Lua in Games

§  Has come to dominate other choices
•  Powerful and fast

•  Lightweight and simple

•  Easily extended

•  Portable and free

§  Currently Lua 5.1

§  See http://lua.org

IMGD 4100 (B 11) 13

Lua Language Data Types

§  Nil – singleton default value, nil
§  Number – internally double (no int’s!)

§  String – array of 8-bit characters

§  Boolean – true, false
Note: everything except false and nil coerced to true!, e.g., “”, 0 are true

§  Function – unnamed objects

§  Table – key/value mapping (any mix of types)

§  UserData – opaque wrapper for other languages

§  Thread – multi-threaded programming (reentrant code)

IMGD 4100 (B 11) 14

Lua Variables and Assignment

§  Untyped: any variable can hold any type of
value at any time

A = 3;
A = “hello”;

§  Multiple values
•  in assignment statements

 A, B, C = 1, 2, 3;
•  multiple return values from functions
 A, B, C = foo();

IMGD 4100 (B 11) 15

“Promiscuous” Syntax and Semantics

§  Optional semi-colons and parens
 A = 10; B = 20;
 A = 10 B = 20

 A = foo();
 A = foo

§  Ignores too few or too many values
 A, B, C, D = 1, 2, 3
 A, B, C = 1, 2, 3, 4

§  Can lead to a debugging nightmare!
§  Moral: Only use for small procedures

IMGD 4100 (B 11) 16

11/10/11

5

Lua Operators

§  arithmetic: + - * / ^
§  relational: < > <= >= == ~=
§  logical: and or not

§  concatenation: ..

... with usual precedence

IMGD 4100 (B 11) 17

Lua Tables

§  heterogeneous associative mappings
§  used a lot
§  standard array-ish syntax

•  except any object (not just int) can be “index” (key)
mytable[17] = “hello”;
mytable[“chuck”] = false;

•  curly-bracket constructor
mytable = { 17 = “hello”, “chuck” = false };

•  default integer index constructor (starts at 1)
test_table = { 12, “goodbye”, true };
test_table = { 1 = 12, 2 = “goodbye”, 3 = true };

 IMGD 4100 (B 11) 18

Lua Control Structures

§  Standard if-then-else, while, repeat and for
•  with break in looping constructs

§  Special for-in iterator for tables
data = { a=1, b=2, c=3 };
for k,v in data do print(k,v) end;

produces, e.g.,
a 1
c 3
b 2

(order undefined)

IMGD 4100 (B 11) 19

Lua Functions

§  standard parameter and return value syntax
 function (a, b)

 return a+b

 end

§  inherently unnamed, but can assign to variables
 foo = function (a, b) return a+b; end

 foo(3, 5) è 8

§  convenience syntax
function foo (a, b) return a+b; end

IMGD 4100 (B 11) 20

11/10/11

6

Optional Syntax for Tables & Functions

§  alternative dot syntax for indexing tables
mytable[17] or mytable.17
mytable[“chuck”] or mytable.“chuck”

§  alternative colon syntax for calling functions

x:foo(a, b)

is equivalent to

x.foo(x, a, b)

IMGD 4100 (B 11) 21

Object-Oriented Pgming in Lua

§  No ‘class’ construct per se (cf. LuaBind)
§  But tables of functions behave very similarly

 Account = { withdraw = function(self, amt)
 self.balance = self.balance – amt

 end,
 deposit = function(self, amount) ... end,
 ... }
 a = { balance = 200,
 withdraw = Account.withdraw, deposit = Account.deposit, ...}

 a.withdraw(a, 100);
 a:withdraw(100)

IMGD 4100 (B 11) 22

Lua Features not Covered

§  local variables (default global)
§  libraries (sorting, matching, etc.)

§  namespace management (using tables)

§  multi-threading (thread type)

§  compilation (bytecode, virtual machine)

§  features primarily used for language extension
•  metatables and metamethods

•  fallbacks

IMGD 4100 (B 11) 23

See http://www.lua.org/manual/5.1

Running Lua 5.1 in VS 2010 C++

In Project > Properties
 > C/C++ > General
 Additional Include Directories: ..\Common\lua\include
 > Linker > General
 Additional Library Directories: ..\Common\lua\lib

C++ Header:
 #pragma comment(lib, "lua.lib")
 extern "C"
 {

 #include <lua.h>
 #include <lualib.h>
 #include <luaxlib.h>

 }

IMGD 4100 (B 11) 24

11/10/11

7

Running Lua 5.1 in VS 2010 C++

 lua_State* pLua = lua_open();

 luaL_openlibs(pLua);

 luaL_dofile(pLua, script_name);

 ...

 lua_close(pLua);

IMGD 4100 (B 11) 25

Connecting Lua and C++

§  Accessing Lua from C++
•  global variables
•  tables (with/without LuaBind)
•  functions (with/without LuaBind)

§  Accessing C++ from Lua (with LuaBind)
•  functions
•  classes

§  LuaBind definitions for Lua “classes”
IMGD 4100 (B 11) 26

C Lua

Connecting Lua and C++

§  Lua virtual stack
•  bidirectional API/buffer between two environments
•  preserves garbage collection safety

§  data wrappers
•  UserData – Lua wrapper for C data
•  luabind::object – C wrapper for Lua data

IMGD 4100 (B 11) 27

C Lua

Lua Virtual Stack

§  both C and Lua env’ts
can put items on and
take items off stack

§  push/pop or direct
indexing

§  positive or negative
indices

§  current top index
(usually 0)

IMGD 4100 (B 11) 28

lua-settop

0

C Lua

11/10/11

8

Accessing Lua from C

IMGD 4100 (B 11) 29

C Lua

Accessing Lua Global Variables from C

§  C tells Lua to push global value onto stack
 lua_getglobal(pLua, “foo”);

§  C retrieves value from stack
•  using appropriate function for expected type
 string s = lua_tostring(pLua, 1);
•  or can check for type

 if (lua_isnumber(pLua, 1))
 { int n = (int) lua_tonumber(pLua, 1) } ...

§  C clears value from stack
 lua_pop(pLua, 1);

IMGD 4100 (B 11) 30

C Lua

Accessing Lua Global Variables from C

§  ScriptedStateMachine\LuaHelperFunctions.h

•  PopLuaNumber(pLua, “foo”)

•  PopLuaString(pLua, “foo”)

•  PopLuaBool(pLua, “foo”)

IMGD 4100 (B 11) 31

C Lua

Accessing Lua Tables from C

§  C asks Lua to push table object onto stack
 lua_getglobal(pLua, “some_table”);

§  C pushes key value onto stack (using appropriate API
function for key type)

lua_pushstring(pLua, “myKey”);

§  C asks Lua to replace given key on stack with
corresponding value from given table

 lua_gettable(pLua, -2);

§  C retrieves value from stack (w. appropriate API)
 string myvalue = lua_tostring(pLua, -1);

§  C clears value (and table) from stack: lua_pop(pLua, 1);

IMGD 4100 (B 11) 32

C Lua

11/10/11

9

Accessing Lua Tables from C

§  SriptedStateMachine\LuaHelperFunctions.h

•  LuaPopNumberFieldFromTable(pLua,“myKey”)

•  LuaPopStringFieldFromTable(pLua, “myKey”)

IMGD 4100 (B 11) 33

C Lua

Calling Lua Function from C

§  C asks Lua to push function object onto stack
 lua_getglobal(pLua, “some_function”);

§  C pushes argument values onto stack (using appropriate
api function for each argument type)

lua_pushnumber(pLua, 17);
lua_pushstring(pLua, “myarg”);

§  C asks Lua to replace given args and function object on
stack with specified number of return value(s)

 lua_call(pLua, 2, 1);

§  C retrieves and clears values from stack

IMGD 4100 (B 11) 34

C Lua

LuaBind 0.9

§  Recently developed utility
§  for connecting Lua and C
§  without explicitly manipulating Lua virtual

stack
§  uses luabind::object “wrapper” class in C

§  overloads [] and () syntax in C
§  http://luabind.sf.net

IMGD 4100 (B 11) 35

Running LuaBind 0.8 in VS 2008 C++

In Project > Properties
 > C/C++ > General
 Additional Include Directories: ..\Common\luabind\include;

 ..\Common\boost\include
 > Linker > General
 Additional Library Directories: ..\Common\luabind\lib

C++:
 #pragma comment(lib, "luabind-0.9.lib")
 #include <luabind/luabind.hpp>

 luabind::open(pLua);

IMGD 4100 (B 11) 36

11/10/11

10

Accessing Lua Global Variables from C
(w. LuaBind)

§  C asks Lua for global values table

 luabind::object global_table = globals(pLua);

§  C accesses global table using overloaded [] syntax
and casting
 string s =
 luabind::object_cast<string>(global_table[“foo”]);

 global_table[“foo”] = 10;

IMGD 4100 (B 11) 37

C Lua

Accessing Lua Tables from C (w. LuaBind)

§  C asks Lua for global values table
 luabind::object global_table = globals(pLua);

§  C accesses global table using overloaded [] syntax
 luabind::object tab = global_table[“mytable”];

§  C accesses any table using overloaded [] syntax and
casting
int val = luabind::object_cast<int>(tab[“key”]);

tab[17] = “shazzam”;

 IMGD 4100 (B 11) 38

C Lua

Calling Lua Functions from C (w. LuaBind)

§  C asks Lua for global values table
 luabind::object global_table = globals(pLua);

§  C accesses global table using overloaded [] syntax
 luabind::object func = global_table[“myfunc”];

§  C calls function using overloaded () syntax
int val =
 luabind::object_cast<int>(func(2, “hello”));

IMGD 4100 (B 11) 39

C Lua

Accessing C from

IMGD 4100 (B 11) 40

C Lua

11/10/11

11

Calling C Function from Lua (w. LuaBind)

§  C “exposes” function to Lua
 void MyFunc (int a, int b) { ... }

 module(pLua) [

 def(“MyFunc”, &MyFunc)
];

§  Lua calls function normally in scripts

 MyFunc(3, 4);

IMGD 4100 (B 11) 41

C Lua

Using C Classes in Lua (w. LuaBind)

§  C “exposes” class to Lua
 class Animal { ...

 public:
 Animal (string ..., int ...) ... { }
 int NumLegs () { ... } }

 module (pLua) [class <Animal>(“Animal”)
 .def(constructor<string, int>())
 .def(“NumLegs”, &Animal::NumLegs)];

§  Lua calls constructor and methods
 cat = Animal(“meow”, 4); print(cat:NumLegs())

IMGD 4100 (B 11) 42

C Lua

Defining Lua Classes in Lua w. LuaBind

IMGD 4100 (B 11) 43

class ‘Animal’

function Animal:__init(noise, legs)
 self.noise = noise
 self.legs = legs
 end

function Animal:getLegs () return self.legs end

cat = Animal(“meow”, 4); print(cat:getLegs())

•  see details of inheritance in Buckland

Scripted State Machine

§  Goal: Allow state changes and behaviors within
given states to be modified without recompiling
game
•  such changes can be made by non-developer
•  designer or user writes only Lua code

§  Some changes will still require C coding and
recompilation:
•  adding new properties of entities (e.g., Miner)
•  adding new capabilities to state machine interpreter
•  (think about extensions to cover these cases....)

IMGD 4100 (B 11) 44

11/10/11

12

Scripted State Machine

§  Each state is a Lua table with keys “Enter”,
“Execute” and “Exit”

§  Values are Lua functions (with entity as first arg)
State_Sleep["Execute"] = function(miner)
 if miner:Fatigued() then
 print ("[Lua]: ZZZZZZ... ”)
 miner:DecreaseFatigue()
 else
 miner:GetFSM():ChangeState(State_GoToMine)
 end

IMGD 4100 (B 11) 45

Scripted State Machine

§  Which Lua objects and functions need to be
accessed from C++?

§  Which C++ objects and functions need to be
accessed from Lua?

IMGD 4100 (B 11) 46

C Lua

C Lua

47

(scripted version a bit
simplified from this)

State_Sleep["Execute"] =
 function(miner)
 if miner:Fatigued() then
 print ("[Lua]: ZZZZZZ... ”)
 miner:DecreaseFatigue()
 else
 miner:GetFSM():ChangeState(State_GoToMine)
 end

Scripted State Machine

§  Which Lua objects and functions need to be
accessed from C++?

•  m_CurrentState holds a luabind::object which is a
state table in Lua

•  accessed as
 m_CurrentState[“Execute”](m_pOwner)

 IMGD 4100 (B 11) 48

C Lua

11/10/11

13

Scripted State Machine

§  Which C++ objects and functions need to be
accessed from (“exposed to”) Lua?

•  ScriptedStateMachine methods (generic)
– CurrentState, SetCurrentState, ChangeState

•  Entity methods (generic, but in Miner in SSM)
–  getFSM

•  Miner methods (used in Lua state code)
– DecreaseFatigue, IncreaseFatigue, Fatigued
– GoldCarried, SetGoldCarried, AddToGoldCarried

 IMGD 4100 (B 11) 49

Code Walk C Lua

Scripting Homework

§  Due Sunday midnight

§  Add global states and blip states to Scripted
State Machine

§  Use these new facilities to add new “frequent
urination” behavior to Miner

IMGD 4100 (B 11) 50

