
11/12/09 

1 

Professor Charles Rich 
Computer Science Department 
rich@wpi.edu 

IMGD 400X (B 09) 1 

To Script, or Not Script, 
That is the Question 

Artificial Intelligence for  
Interactive Media and Games 

[Based on Buckland, Chapter 6 and lecture by Robin Burke] 

Outline   

  Scripting 

  Lua Language 

  Connecting Lua and C++ (LuaBind) 

  Scripted State Machine 

  Scripting Homework (due Sunday) 

IMGD 400X (B 09) 2 



11/12/09 

2 

Scripting 

  Two senses of the word 
•  “scripted behavior” 

–  having agents follow pre-set actions 
–  rather than choosing them dynamically 

•  “scripting language” 
–  using a dynamic language 
–  to make the game easier to modify  

  The senses are related 
•  a scripting language is good for writing scripted 

behaviors (among other things) 

IMGD 400X (B 09) 3 

IMGD 400X (B 09) 4 

Scripted Behavior  

  One way of building AI behavior 

  What’s the other way? 

  Versus simulation-based behavior 

•  e.g., goal/behavior trees 

•  genetic algorithms 

•  machine learning 

•  etc. 



11/12/09 

3 

Scripted vs. Simulation-Based AI Behavior 

  Example of scripted AI behavior 
•  fixed trigger regions 

– when player/enemy enters predefined area 

–  send pre-specified waiting units to attack 

•  doesn’t truly simulate scouting and preparedness  

•  player can easily defeat one she figures it out 
– mass outnumbering force just outside trigger area 

–  attack all at once 

IMGD 400X (B 09) 5 

Scripted vs. Simulation-Based AI Behavior 

  Non-scripted (“simulation-based”) version 
•  send out patrols 

•  use reconnaissance information to influence unit 
allocation 

•  adapts to player’s behavior (e.g., massing of 
forces) 

•  can even vary patrol depth depending on stage of 
the game 

IMGD 400X (B 09) 6 



11/12/09 

4 

Advantages of Scripted AI Behavior 

  Typically less computation 
•  apply a simple rule, rather than run a complex 

simulation 

  Easier to write, understand and modify 
•  than a sophisticated simulation 

IMGD 400X (B 09) 7 

Disadvantages of Scripted AI Behavior 

  Limits player creativity 
•  players will try things that “should” work (based on 

their own physical intuitions) 
•  will be disappointed when they don’t 

  Allows degenerate strategies 
•  players will learn the limits of the scripts 
•  and exploit them 

  Games will need many scripts 
•  predicting their interactions can be difficult 
•  complex debugging problem 

IMGD 400X (B 09) 8 



11/12/09 

5 

Stage Direction Scripts 

  Controlling camera movement and “bit players” 
–  create a guard at castle drawbridge 
–  lock camera on guard 
– move guard toward player 
–  etc. 

  Better application of scripted behavior than AI 
logic 
•  doesn’t limit player creativity as much 
•  improves visual experience 

  Can also be done by sophisticated simulation 
•  e.g., camera system in God of War 

IMGD 400X (B 09) 9 

IMGD 400X (B 09) 10 

Scripting Languages   

You can probably name a bunch of them: 

  custom languages tied to specific games/engines 
•  UnrealScript, QuakeC, HaloScript, LSL, ... 

  general purpose languages 
•  Tcl, Python, Perl, Javascript, Ruby, Lua, ... 
•  the “modern” trend, especially with Lua 

Often (mostly) used to write scripted (AI) behaviors. 



11/12/09 

6 

Scripting Languages 
  Easier to learn and use to write small 

procedures than C++ 
•  dynamically typed 
•  garbage collected 
•  simpler syntax 

  Slower to execute (becoming less relevant with 
     JIT compilation) 

  Many popular applications and languages 
•  robotics (Python) 
•  web pages (JavaScript) 
•  system administration (Perl) 
•  etc. 
IMGD 400X (B 09) 11 

Scripting Languages in Games 

  A divide-and-conquer strategy 
•  implement part of the game in C++ 

–  the time-critical inner loops 

–  code you don’t change very often 

–  requires complete (long) rebuild for each change 

•  and part in a scripting language 
–  don’t have to rebuild C++ part when change scripts 

–  code you want to evolve quickly (e.g, AI behaviors) 

–  code you want to share (with designers, players) 

–  code that is not time-critical (can migrate to C++) 

–  parameter files (cf. Raven Params.ini) 
IMGD 400X (B 09) 12 



11/12/09 

7 

Lua in Games 

  Has come to dominate other choices 
•  Powerful and fast 

•  Lightweight and simple 

•  Easily extended 

•  Portable and free 

  Currently Lua 5.1 
  See http://lua.org 

IMGD 400X (B 09) 13 

Lua Language Data Types 

  Nil – singleton default value, nil 

  Number – internally double (no int’s!) 

  String – array of 8-bit characters 

  Boolean – true, false 
Note: everything except false and nil coerced to true!, e.g., “”, 0 are true 

  Function – unnamed objects 

  Table – key/value mapping (any mix of types) 

  UserData – opaque wrapper for other languages 

  Thread – multi-threaded programming (reentrant code) 

IMGD 400X (B 09) 14 



11/12/09 

8 

Lua Variables and Assignment 

  Untyped:  any variable can hold any type of 
value at any time 

A = 3; 
A = “hello”; 

  Multiple values 
•  in assignment statements 

     A, B, C = 1, 2, 3; 
•  multiple return values from functions 
       A, B, C = foo(); 

IMGD 400X (B 09) 15 

“Promiscuous” Syntax and Semantics 

  Optional semi-colons and parens 
  A = 10; B = 20; 
  A = 10  B = 20 

       A = foo(); 
       A = foo 

  Ignores too few or too many values 
 A, B, C, D =  1, 2, 3 
 A, B, C  = 1, 2, 3, 4 

  Can lead to a debugging nightmare! 
  Moral:  Only use for small procedures 

IMGD 400X (B 09) 16 



11/12/09 

9 

Lua Operators 

  arithmetic:  +  -   *   /  ^ 

  relational:  <   >  <=  >=  ==  ~= 
  logical:  and  or  not 
  concatenation:  .. 

... with usual precedence 

IMGD 400X (B 09) 17 

Lua Tables 

  heterogeneous associative mappings 
  used a lot 
  standard array-ish syntax 

•  except any object (not just int) can be “index” (key) 
mytable[17] = “hello”; 
mytable[“chuck”] = false; 

•  curly-bracket constructor 
mytable = { 17 = “hello”, “chuck” = false }; 

•  default integer index constructor (starts at 1) 
test_table = { 12, “goodbye”, true }; 
test_table = { 1 = 12, 2 = “goodbye”, 3 = true }; 

IMGD 400X (B 09) 18 



11/12/09 

10 

Lua Control Structures 

  Standard if-then-else, while, repeat and for 
•  with break in looping constructs 

  Special for-in iterator for tables 
data = { a=1, b=2, c=3 }; 
for k,v in data do print(k,v) end; 

produces, e.g.,  
a   1 
c   3 
b   2 

(order undefined) 

IMGD 400X (B 09) 19 

Lua Functions 

  standard parameter and return value syntax 
  function (a, b) 

          return a+b 

      end 

  inherently unnamed, but can assign to variables 
   foo = function (a, b) return a+b; end 

     foo(3, 5)   8 

  convenience syntax 
function foo (a, b) return a+b; end 

IMGD 400X (B 09) 20 



11/12/09 

11 

Optional Syntax for Tables & Functions 

  alternative dot syntax for indexing tables 
mytable[17]    or    mytable.17           
mytable[“chuck”]    or    mytable.“chuck” 

  alternative colon syntax for calling functions 

x:foo(a, b) 

is equivalent to  

x.foo(x, a, b) 

IMGD 400X (B 09) 21 

Object-Oriented Pgming in Lua 

  No ‘class’ construct per se (cf. LuaBind) 
  But tables of functions behave very similarly 

 Account = { withdraw = function(self, amt)  
        self.balance = self.balance – amt 

            end, 
                        deposit = function(self, amount) ... end, 
                        ... } 
     a = { balance = 0,  
             withdraw = Account.withdraw, deposit = Account.deposit, ...} 

     a.withdraw(a, 100); 
 a:withdraw(100) 

IMGD 400X (B 09) 22 



11/12/09 

12 

Lua Features not Covered 

  local variables (default global) 

  libraries (sorting, matching, etc.) 

  namespace management (using tables) 

  multi-threading (thread type) 

  compilation (bytecode, virtual machine) 

  features primarily used for language extension 
•  metatables and metamethods  

•  fallbacks 

IMGD 400X (B 09) 23 

See http://www.lua.org/manual/5.1 

Running Lua 5.1 in VS 2008 C++ 

In Project > Properties 
 > C/C++ > General 
  Additional Include Directories: ..\Common\lua\include 
 > Linker > General 
    Additional Library Directories: ..\Common\lua\msvc-9.0-sp1\lib-x86 

C++ Header: 
 #pragma comment(lib, "lua.debug.lib") 
 extern "C" 
 { 

        #include <lua.h> 
        #include <lualib.h> 
        #include <lauxlib.h> 

 } 

IMGD 400X (B 09) 24 



11/12/09 

13 

Running Lua 5.1 in VS 2008 C++ 

  lua_State* pLua = lua_open(); 

  luaL_openlibs(pLua); 

  luaL_dofile(pLua, script_name); 

  ... 

  lua_close(pLua); 

IMGD 400X (B 09) 25 

Connecting Lua and C++  

  Accessing Lua from C++ 
•  global variables 
•  tables (with/without LuaBind) 
•  functions (with/without LuaBind) 

  Accessing C++ from Lua (with LuaBind) 
•  functions 
•  classes 

  LuaBind definitions for Lua “classes” 
IMGD 400X (B 09) 26 

C Lua 



11/12/09 

14 

Connecting Lua and C++  

  Lua virtual stack 
•  bidirectional API/buffer between two environments 
•  preserves garbage collection safety 

  data wrappers 
•  UserData –  Lua wrapper for C data 
•  luabind::object – C wrapper for Lua data 

IMGD 400X (B 09) 27 

C Lua 

Lua Virtual Stack 

  both C and Lua env’ts 
can put items on and 
take items off stack 

  push/pop or direct 
indexing 

  positive or negative 
indices 

  current top index 
(usually 0) 

IMGD 400X (B 09) 28 

lua-settop 

0 

C Lua 



11/12/09 

15 

Accessing Lua from C 

IMGD 400X (B 09) 29 

C Lua 

Accessing Lua Global Variables from C 

  C tells Lua to push global value onto stack 
  lua_getglobal(pLua, “foo”); 

  C retrieves value from stack 
•  using appropriate function for expected type 
          string s = lua_tostring(pLua, 1); 
•  or can check for type 

     if ( lua_isnumber(pLua, 1) )  
        { int n = (int) lua_tonumber(pLua, 1) } ... 

  C clears value from stack 
        lua_pop(pLua, 1); 

IMGD 400X (B 09) 30 

C Lua 



11/12/09 

16 

Accessing Lua Global Variables from C 

  ScriptedStateMachine\LuaHelperFunctions.h 

•  PopLuaNumber(pLua, “foo”) 

•  PopLuaString(pLua, “foo”) 

•  PopLuaBool(pLua, “foo”) 

IMGD 400X (B 09) 31 

C Lua 

Accessing Lua Tables from C 

  C asks Lua to push table object onto stack 
  lua_getglobal(pLua, “some_table”); 

  C pushes key value onto stack (using appropriate api 
function for key type) 

lua_pushstring(pLua, “myKey”); 

  C asks Lua to replace given key on stack with 
corresponding value from given table 

  lua_gettable(pLua, -2); 

  C retrieves value from stack (w. appropriate api) 
      string myvalue = lua_tostring(pLua, -1); 

  C clears value (and table) from stack:   lua_pop(pLua, 1); 
IMGD 400X (B 09) 32 

C Lua 



11/12/09 

17 

Accessing Lua Tables from C 

  SriptedStateMachine\LuaHelperFunctions.h 

•  LuaPopNumberFieldFromTable(pLua,“myKey”) 

•  LuaPopStringFieldFromTable(pLua, “myKey”) 

IMGD 400X (B 09) 33 

C Lua 

Calling Lua Function from C 

  C asks Lua to push function object onto stack 
  lua_getglobal(pLua, “some_function”); 

  C pushes argument values onto stack (using appropriate 
api function for each argument type) 

lua_pushnumber(pLua, 17); 
lua_pushstring(pLua, “myarg”); 

  C asks Lua to replace given args and function object on 
stack with specified number of return value(s) 

  lua_call(pLua, 2, 1); 

  C retrieves and clears values from stack 

IMGD 400X (B 09) 34 

C Lua 



11/12/09 

18 

LuaBind 

  Recently developed utility (beta 0.8) 

  for connecting Lua and C 
  without explicitly manipulating Lua virtual 

stack 

  uses luabind::object “wrapper” class in C 
  overloads [ ] and ( ) syntax in C 
  http://luabind.sf.net 

IMGD 400X (B 09) 35 

Running LuaBind 0.8 in VS 2008 C++ 

In Project > Properties 
 > C/C++ > General 
  Additional Include Directories: ..\Common\luabind\include; 

                                                              ..\Common\boost\include 
 > Linker > General 
    Additional Library Directories: ..\Common\luabind\msvc-9.0-sp1\lib-x86 

C++: 
 #pragma comment(lib, "luabind.debug.lib") 
 #include <luabind/luabind.hpp> 

     luabind::open(pLua); 

IMGD 400X (B 09) 36 



11/12/09 

19 

Accessing Lua Global Variables from C  
(w. LuaBind) 

  C asks Lua for global values table 

  luabind::object global_table = globals(pLua); 

  C accesses global table using overloaded [ ] syntax 
and casting 
  string s =     

 luabind::object_cast<string>(global_table[“foo”]); 

  global_table[“foo”] = 10; 

IMGD 400X (B 09) 37 

C Lua 

Accessing Lua Tables from C (w. LuaBind) 

  C asks Lua for global values table 
  luabind::object global_table = globals(pLua); 

  C accesses global table using overloaded [ ] syntax 
  luabind::object tab = global_table[“mytable”]; 

  C accesses any table using overloaded [ ] syntax and 
casting   
int val = luabind::object_cast<int>(tab[“key”]); 

tab[17] = “shazzam”; 

IMGD 400X (B 09) 38 

C Lua 



11/12/09 

20 

Calling Lua Functions from C (w. LuaBind) 

  C asks Lua for global values table 
  luabind::object global_table = globals(pLua); 

  C accesses global table using overloaded [ ] syntax 
  luabind::object func = global_table[“myfunc”]; 

  C calls function using overloaded ( ) syntax 
int val =  
     luabind::object_cast<int>(func(2, “hello”)); 

IMGD 400X (B 09) 39 

C Lua 

Accessing C from 

IMGD 400X (B 09) 40 

C Lua 



11/12/09 

21 

Calling C Function from Lua (w. LuaBind) 

  C “exposes” function to Lua 

     void MyFunc (int a, int b) { ... } 

 module(pLua) [  
          def(“MyFunc”, &MyFunc)  
    ]; 

  Lua calls function normally in scripts 

 MyFunc(3, 4); 

IMGD 400X (B 09) 41 

C Lua 

Using C Classes in Lua (w. LuaBind) 

  C “exposes” class to Lua 

    class Animal { ... 
         public:   
               Animal (string ..., int ...) ... { } 
               int NumLegs () { ... } } 

     module (pLua) [ class <Animal>(“Animal”) 
              .def(constructor<string, int>()) 
              .def(“NumLegs”, &Animal::NumLegs) ]; 

  Lua calls constructor and methods 
    cat = Animal(“meow”, 4);  print(cat:NumLegs()) 

IMGD 400X (B 09) 42 

C Lua 



11/12/09 

22 

Defining Lua Classes in Lua w. LuaBind 

IMGD 400X (B 09) 43 

class ‘Animal’ 

function Animal:__init(noise, legs) 
   self.noise = noise 
   self.legs = legs 
 end 

function Animal:getLegs () return self.legs end 

cat = Animal(“meow”, 4); print(cat:getLegs()) 

•   see details of inheritance in Buckland 

Scripted State Machine 

  Goal:  Allow state changes and behaviors within 
given states to be modified without recompiling 
game 
•  such changes can be made by non-developer 
•  designer or user writes only Lua code 

  Some changes will still require C coding and 
recompilation: 
•  adding new properties of entities (e.g., Miner) 
•  adding new capabilities to state machine interpreter 
•  (think about extensions to cover these cases....)  

IMGD 400X (B 09) 44 



11/12/09 

23 

Scripted State Machine 

  Each state is a Lua table with keys “Enter”, 
“Execute” and “Exit” 

  Values are Lua functions (with entity as first arg) 
State_Sleep["Execute"] = function(miner) 
    if miner:Fatigued() then 
          print ("[Lua]: ZZZZZZ... ”) 
          miner:DecreaseFatigue() 
     else 
          miner:GetFSM():ChangeState(State_GoToMine) 
     end 

IMGD 400X (B 09) 45 

Scripted State Machine 

  Expose the C functions to Lua which need to 
be called in Lua state scripts 

•  ScriptedStateMachine methods (generic) 
– CurrentState, SetCurrentState, ChangeState 

•  Miner methods 
–  getFSM 
– DecreaseFatigue, IncreaseFatigue, Fatigued 
– GoldCarried, SetGoldCarried, AddToGoldCarried 

IMGD 400X (B 09) 46 

Code Walk 



11/12/09 

24 

Scripting Homework   

  Due Sunday midnight 

  Add global states and blip states to Scripted 
State Machine 

  Use these new facilities to add new “frequent 
urination” behavior to Miner 

IMGD 400X (B 09) 47 


