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To Script, or Not Script, 
That is the Question 

Artificial Intelligence for  
Interactive Media and Games 

[Based on Buckland, Chapter 6 and lecture by Robin Burke] 

Outline   

  Scripting 

  Lua Language 

  Connecting Lua and C++ (LuaBind) 

  Scripted State Machine 

  Scripting Homework (due Sunday) 
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Scripting 

  Two senses of the word 
•  “scripted behavior” 

–  having agents follow pre-set actions 
–  rather than choosing them dynamically 

•  “scripting language” 
–  using a dynamic language 
–  to make the game easier to modify  

  The senses are related 
•  a scripting language is good for writing scripted 

behaviors (among other things) 
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Scripted Behavior  

  One way of building AI behavior 

  What’s the other way? 

  Versus simulation-based behavior 

•  e.g., goal/behavior trees 

•  genetic algorithms 

•  machine learning 

•  etc. 
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Scripted vs. Simulation-Based AI Behavior 

  Example of scripted AI behavior 
•  fixed trigger regions 

– when player/enemy enters predefined area 

–  send pre-specified waiting units to attack 

•  doesn’t truly simulate scouting and preparedness  

•  player can easily defeat one she figures it out 
– mass outnumbering force just outside trigger area 

–  attack all at once 
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Scripted vs. Simulation-Based AI Behavior 

  Non-scripted (“simulation-based”) version 
•  send out patrols 

•  use reconnaissance information to influence unit 
allocation 

•  adapts to player’s behavior (e.g., massing of 
forces) 

•  can even vary patrol depth depending on stage of 
the game 
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Advantages of Scripted AI Behavior 

  Typically less computation 
•  apply a simple rule, rather than run a complex 

simulation 

  Easier to write, understand and modify 
•  than a sophisticated simulation 

IMGD 400X (B 09) 7 

Disadvantages of Scripted AI Behavior 

  Limits player creativity 
•  players will try things that “should” work (based on 

their own physical intuitions) 
•  will be disappointed when they don’t 

  Allows degenerate strategies 
•  players will learn the limits of the scripts 
•  and exploit them 

  Games will need many scripts 
•  predicting their interactions can be difficult 
•  complex debugging problem 
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Stage Direction Scripts 

  Controlling camera movement and “bit players” 
–  create a guard at castle drawbridge 
–  lock camera on guard 
– move guard toward player 
–  etc. 

  Better application of scripted behavior than AI 
logic 
•  doesn’t limit player creativity as much 
•  improves visual experience 

  Can also be done by sophisticated simulation 
•  e.g., camera system in God of War 
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Scripting Languages   

You can probably name a bunch of them: 

  custom languages tied to specific games/engines 
•  UnrealScript, QuakeC, HaloScript, LSL, ... 

  general purpose languages 
•  Tcl, Python, Perl, Javascript, Ruby, Lua, ... 
•  the “modern” trend, especially with Lua 

Often (mostly) used to write scripted (AI) behaviors. 
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Scripting Languages 
  Easier to learn and use to write small 

procedures than C++ 
•  dynamically typed 
•  garbage collected 
•  simpler syntax 

  Slower to execute (becoming less relevant with 
     JIT compilation) 

  Many popular applications and languages 
•  robotics (Python) 
•  web pages (JavaScript) 
•  system administration (Perl) 
•  etc. 
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Scripting Languages in Games 

  A divide-and-conquer strategy 
•  implement part of the game in C++ 

–  the time-critical inner loops 

–  code you don’t change very often 

–  requires complete (long) rebuild for each change 

•  and part in a scripting language 
–  don’t have to rebuild C++ part when change scripts 

–  code you want to evolve quickly (e.g, AI behaviors) 

–  code you want to share (with designers, players) 

–  code that is not time-critical (can migrate to C++) 

–  parameter files (cf. Raven Params.ini) 
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Lua in Games 

  Has come to dominate other choices 
•  Powerful and fast 

•  Lightweight and simple 

•  Easily extended 

•  Portable and free 

  Currently Lua 5.1 
  See http://lua.org 
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Lua Language Data Types 

  Nil – singleton default value, nil 

  Number – internally double (no int’s!) 

  String – array of 8-bit characters 

  Boolean – true, false 
Note: everything except false and nil coerced to true!, e.g., “”, 0 are true 

  Function – unnamed objects 

  Table – key/value mapping (any mix of types) 

  UserData – opaque wrapper for other languages 

  Thread – multi-threaded programming (reentrant code) 
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Lua Variables and Assignment 

  Untyped:  any variable can hold any type of 
value at any time 

A = 3; 
A = “hello”; 

  Multiple values 
•  in assignment statements 

     A, B, C = 1, 2, 3; 
•  multiple return values from functions 
       A, B, C = foo(); 
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“Promiscuous” Syntax and Semantics 

  Optional semi-colons and parens 
  A = 10; B = 20; 
  A = 10  B = 20 

       A = foo(); 
       A = foo 

  Ignores too few or too many values 
 A, B, C, D =  1, 2, 3 
 A, B, C  = 1, 2, 3, 4 

  Can lead to a debugging nightmare! 
  Moral:  Only use for small procedures 
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Lua Operators 

  arithmetic:  +  -   *   /  ^ 

  relational:  <   >  <=  >=  ==  ~= 
  logical:  and  or  not 
  concatenation:  .. 

... with usual precedence 
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Lua Tables 

  heterogeneous associative mappings 
  used a lot 
  standard array-ish syntax 

•  except any object (not just int) can be “index” (key) 
mytable[17] = “hello”; 
mytable[“chuck”] = false; 

•  curly-bracket constructor 
mytable = { 17 = “hello”, “chuck” = false }; 

•  default integer index constructor (starts at 1) 
test_table = { 12, “goodbye”, true }; 
test_table = { 1 = 12, 2 = “goodbye”, 3 = true }; 
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Lua Control Structures 

  Standard if-then-else, while, repeat and for 
•  with break in looping constructs 

  Special for-in iterator for tables 
data = { a=1, b=2, c=3 }; 
for k,v in data do print(k,v) end; 

produces, e.g.,  
a   1 
c   3 
b   2 

(order undefined) 
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Lua Functions 

  standard parameter and return value syntax 
  function (a, b) 

          return a+b 

      end 

  inherently unnamed, but can assign to variables 
   foo = function (a, b) return a+b; end 

     foo(3, 5)   8 

  convenience syntax 
function foo (a, b) return a+b; end 
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Optional Syntax for Tables & Functions 

  alternative dot syntax for indexing tables 
mytable[17]    or    mytable.17           
mytable[“chuck”]    or    mytable.“chuck” 

  alternative colon syntax for calling functions 

x:foo(a, b) 

is equivalent to  

x.foo(x, a, b) 
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Object-Oriented Pgming in Lua 

  No ‘class’ construct per se (cf. LuaBind) 
  But tables of functions behave very similarly 

 Account = { withdraw = function(self, amt)  
        self.balance = self.balance – amt 

            end, 
                        deposit = function(self, amount) ... end, 
                        ... } 
     a = { balance = 0,  
             withdraw = Account.withdraw, deposit = Account.deposit, ...} 

     a.withdraw(a, 100); 
 a:withdraw(100) 
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Lua Features not Covered 

  local variables (default global) 

  libraries (sorting, matching, etc.) 

  namespace management (using tables) 

  multi-threading (thread type) 

  compilation (bytecode, virtual machine) 

  features primarily used for language extension 
•  metatables and metamethods  

•  fallbacks 

IMGD 400X (B 09) 23 

See http://www.lua.org/manual/5.1 

Running Lua 5.1 in VS 2008 C++ 

In Project > Properties 
 > C/C++ > General 
  Additional Include Directories: ..\Common\lua\include 
 > Linker > General 
    Additional Library Directories: ..\Common\lua\msvc-9.0-sp1\lib-x86 

C++ Header: 
 #pragma comment(lib, "lua.debug.lib") 
 extern "C" 
 { 

        #include <lua.h> 
        #include <lualib.h> 
        #include <lauxlib.h> 

 } 
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Running Lua 5.1 in VS 2008 C++ 

  lua_State* pLua = lua_open(); 

  luaL_openlibs(pLua); 

  luaL_dofile(pLua, script_name); 

  ... 

  lua_close(pLua); 
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Connecting Lua and C++  

  Accessing Lua from C++ 
•  global variables 
•  tables (with/without LuaBind) 
•  functions (with/without LuaBind) 

  Accessing C++ from Lua (with LuaBind) 
•  functions 
•  classes 

  LuaBind definitions for Lua “classes” 
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C Lua 
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Connecting Lua and C++  

  Lua virtual stack 
•  bidirectional API/buffer between two environments 
•  preserves garbage collection safety 

  data wrappers 
•  UserData –  Lua wrapper for C data 
•  luabind::object – C wrapper for Lua data 
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C Lua 

Lua Virtual Stack 

  both C and Lua env’ts 
can put items on and 
take items off stack 

  push/pop or direct 
indexing 

  positive or negative 
indices 

  current top index 
(usually 0) 
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lua-settop 

0 

C Lua 



11/12/09 

15 

Accessing Lua from C 
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C Lua 

Accessing Lua Global Variables from C 

  C tells Lua to push global value onto stack 
  lua_getglobal(pLua, “foo”); 

  C retrieves value from stack 
•  using appropriate function for expected type 
          string s = lua_tostring(pLua, 1); 
•  or can check for type 

     if ( lua_isnumber(pLua, 1) )  
        { int n = (int) lua_tonumber(pLua, 1) } ... 

  C clears value from stack 
        lua_pop(pLua, 1); 
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C Lua 
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Accessing Lua Global Variables from C 

  ScriptedStateMachine\LuaHelperFunctions.h 

•  PopLuaNumber(pLua, “foo”) 

•  PopLuaString(pLua, “foo”) 

•  PopLuaBool(pLua, “foo”) 
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C Lua 

Accessing Lua Tables from C 

  C asks Lua to push table object onto stack 
  lua_getglobal(pLua, “some_table”); 

  C pushes key value onto stack (using appropriate api 
function for key type) 

lua_pushstring(pLua, “myKey”); 

  C asks Lua to replace given key on stack with 
corresponding value from given table 

  lua_gettable(pLua, -2); 

  C retrieves value from stack (w. appropriate api) 
      string myvalue = lua_tostring(pLua, -1); 

  C clears value (and table) from stack:   lua_pop(pLua, 1); 
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C Lua 
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Accessing Lua Tables from C 

  SriptedStateMachine\LuaHelperFunctions.h 

•  LuaPopNumberFieldFromTable(pLua,“myKey”) 

•  LuaPopStringFieldFromTable(pLua, “myKey”) 
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C Lua 

Calling Lua Function from C 

  C asks Lua to push function object onto stack 
  lua_getglobal(pLua, “some_function”); 

  C pushes argument values onto stack (using appropriate 
api function for each argument type) 

lua_pushnumber(pLua, 17); 
lua_pushstring(pLua, “myarg”); 

  C asks Lua to replace given args and function object on 
stack with specified number of return value(s) 

  lua_call(pLua, 2, 1); 

  C retrieves and clears values from stack 
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C Lua 
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LuaBind 

  Recently developed utility (beta 0.8) 

  for connecting Lua and C 
  without explicitly manipulating Lua virtual 

stack 

  uses luabind::object “wrapper” class in C 
  overloads [ ] and ( ) syntax in C 
  http://luabind.sf.net 
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Running LuaBind 0.8 in VS 2008 C++ 

In Project > Properties 
 > C/C++ > General 
  Additional Include Directories: ..\Common\luabind\include; 

                                                              ..\Common\boost\include 
 > Linker > General 
    Additional Library Directories: ..\Common\luabind\msvc-9.0-sp1\lib-x86 

C++: 
 #pragma comment(lib, "luabind.debug.lib") 
 #include <luabind/luabind.hpp> 

     luabind::open(pLua); 
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Accessing Lua Global Variables from C  
(w. LuaBind) 

  C asks Lua for global values table 

  luabind::object global_table = globals(pLua); 

  C accesses global table using overloaded [ ] syntax 
and casting 
  string s =     

 luabind::object_cast<string>(global_table[“foo”]); 

  global_table[“foo”] = 10; 
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C Lua 

Accessing Lua Tables from C (w. LuaBind) 

  C asks Lua for global values table 
  luabind::object global_table = globals(pLua); 

  C accesses global table using overloaded [ ] syntax 
  luabind::object tab = global_table[“mytable”]; 

  C accesses any table using overloaded [ ] syntax and 
casting   
int val = luabind::object_cast<int>(tab[“key”]); 

tab[17] = “shazzam”; 

IMGD 400X (B 09) 38 

C Lua 
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Calling Lua Functions from C (w. LuaBind) 

  C asks Lua for global values table 
  luabind::object global_table = globals(pLua); 

  C accesses global table using overloaded [ ] syntax 
  luabind::object func = global_table[“myfunc”]; 

  C calls function using overloaded ( ) syntax 
int val =  
     luabind::object_cast<int>(func(2, “hello”)); 
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C Lua 

Accessing C from 
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C Lua 
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Calling C Function from Lua (w. LuaBind) 

  C “exposes” function to Lua 

     void MyFunc (int a, int b) { ... } 

 module(pLua) [  
          def(“MyFunc”, &MyFunc)  
    ]; 

  Lua calls function normally in scripts 

 MyFunc(3, 4); 

IMGD 400X (B 09) 41 

C Lua 

Using C Classes in Lua (w. LuaBind) 

  C “exposes” class to Lua 

    class Animal { ... 
         public:   
               Animal (string ..., int ...) ... { } 
               int NumLegs () { ... } } 

     module (pLua) [ class <Animal>(“Animal”) 
              .def(constructor<string, int>()) 
              .def(“NumLegs”, &Animal::NumLegs) ]; 

  Lua calls constructor and methods 
    cat = Animal(“meow”, 4);  print(cat:NumLegs()) 
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C Lua 
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Defining Lua Classes in Lua w. LuaBind 
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class ‘Animal’ 

function Animal:__init(noise, legs) 
   self.noise = noise 
   self.legs = legs 
 end 

function Animal:getLegs () return self.legs end 

cat = Animal(“meow”, 4); print(cat:getLegs()) 

•   see details of inheritance in Buckland 

Scripted State Machine 

  Goal:  Allow state changes and behaviors within 
given states to be modified without recompiling 
game 
•  such changes can be made by non-developer 
•  designer or user writes only Lua code 

  Some changes will still require C coding and 
recompilation: 
•  adding new properties of entities (e.g., Miner) 
•  adding new capabilities to state machine interpreter 
•  (think about extensions to cover these cases....)  
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Scripted State Machine 

  Each state is a Lua table with keys “Enter”, 
“Execute” and “Exit” 

  Values are Lua functions (with entity as first arg) 
State_Sleep["Execute"] = function(miner) 
    if miner:Fatigued() then 
          print ("[Lua]: ZZZZZZ... ”) 
          miner:DecreaseFatigue() 
     else 
          miner:GetFSM():ChangeState(State_GoToMine) 
     end 
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Scripted State Machine 

  Expose the C functions to Lua which need to 
be called in Lua state scripts 

•  ScriptedStateMachine methods (generic) 
– CurrentState, SetCurrentState, ChangeState 

•  Miner methods 
–  getFSM 
– DecreaseFatigue, IncreaseFatigue, Fatigued 
– GoldCarried, SetGoldCarried, AddToGoldCarried 
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Code Walk 
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Scripting Homework   

  Due Sunday midnight 

  Add global states and blip states to Scripted 
State Machine 

  Use these new facilities to add new “frequent 
urination” behavior to Miner 
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