
1

3 States and a Plan:
The AI of F.E.A.R.

Jeff Orkin
Monolith Productions/

MIT Media Lab

2

We wanted FEAR to be an over the top action movie experience, with
combat as intense as multiplayer against a team of experienced
humans.
AI work in squads to take cover, lay suppression fire, blind fire, dive thru
windows to safety, flush out player w/ grenades, etc.

3

FSM: 3 States

So it seems counter-intuitive that our finite state machine would have
only 3 states.

4

FSM: 3 States

Goto Animate

Use

Smart

Object

These are the only states in our Finite State Machine: Goto, Animate,
and UseSmartObject.

UseSmartObject is just a fancy animate state, specific to our systems
at Monolith. Rather than explicitly telling the state to play a particular
animation, we give it a game database record for a set of animations.
This is really an implementation detail…

5

FSM: 3 States

Goto Animate

Animate

…and for the purposes of this talk, we can just consider it to be the
same as animate.

6

FSM: 2 States!

Goto Animate

So what we are really talking about is a FSM with only two states! Goto
and Animate.

As much as we like to pat ourselves on the back, and talk about how
smart our AI are, the reality is that all AI ever do is move around and
play animations! Think about it. An AI going for cover is just moving to
some position, then playing a duck or lean animation. An AI attacking
just loops a firing animation. Sure, the animation system does
additional work on keyframes, such as playing footstep sounds,
creating weapon effects, or telling the weapon to fire a bullet, but as far
as the AI’s behavior and decision making goes, he’s just moving around
or playing an animation.

And in fact, moving is performed by playing an animation! And various
animations (like recoils, jumps, and falls) may move the character. So
the only difference between Goto and animate is that Goto is playing an
animation while heading towards some specific destination, while
Animate just plays the animation, which may have a side effect of
moving the character some arbitrary distance.

The hard part of modeling character behavior is determining when to
transition between these two states, and what parameters to set.
Which destination should we go to? How fast should we go? Where is
the destination? Which animation should I play? Should the animation
play once, or loop?

7

FSM: Transition Logic
void StateAttack::Update()
{

//...
if(Ammo == 0)
{

pState = Reload(bCrouch);
return;

}

//...
}

The logic determining when to transition from one state to another, and
which parameters to specify have to live somewhere. This logic may be
written directly into the code of the states themselves, or may be
external in some kind of table, or script file, or may be represented
visually in some kind of FSM modeling tool. However the logic is
specified, in all of these cases it has to be specified manually by a
programmer or designer.

For FEAR, this is where planning comes in. We decided to move that
logic into a planning system, rather than embedding it in the FSM as
games typically have in the past. As you will see in this talk, a planning
system gives AI the knowledge they need to be able to make their own
decisions about when to transition from one state to another. This
relieves the programmer or designer of a burden that gets bigger with
each generation of games.

8

Shogo, 1998

Let’s look at the recent history of game AI. In the early generations of
shooters, players were happy if the AI noticed them and started
attacking.

9

No One Lives Forever, 2000

After a few years, players wanted AI that could use the environment to
their advantage, so we start seeing AI that can take cover, and even flip
over furniture to create their own cover.

In NOLF and NOLF2, AI pop randomly in and out of cover, like a
shooting gallery.

10

F.E.A.R., 2005

Today, players expect more realism, to complement the realism of the
real-time lighting and physics environments. If the simulation of the AI
behavior is not as realistic as the lighting and physics simulation, it can
be jarring.

In FEAR AI use cover more tactically, coordinating with a squad to lay
suppression fire while others advance. AI only leave cover when
threatened, and blind fire if they have no better position.

With each layer of realism, the behavior gets more and more complex.
The complexity required today for AAA titles is getting unmanageable.
At last year’s GDC, Damian Isla gave a great talk about managing
complexity in the Halo 2 AI. This talk could be thought of as a variation
on the same theme.

11

Halo 2, 2004
Allowable behaviors for infantry, drivers, and passengers

Here is a diagram from Damian’s paper, and without even reading any
of the text, it is obvious that things are getting quite complex. These
characters have many interacting behaviors.

So, this diagram is evidence that complexity is a big problem for all of
us. This rapidly growing complexity is a problem for all game AI
developers, and introducing real-time planning was our attempt at
solving the problem.

This is one of the main takeaways from this talk: It’s not that any
particular behavior in FEAR could not be implemented with existing
techniques. Instead, it is the complexity of the combination and
interaction of all of the behaviors that becomes unmanageable.

FOR THIS CLASS WE CAN SUMMARIZE THIS WHOLE TALK BY
SAYING THAT ORKIN GENERATES THESE HIERARCHIES “ON THE
FLY” BY REASONING ABOUT
THE RELATIONSHIP BETWEEN A CHARACTER’S POSSIBLE
ACTIONS AND THE CURRENT ENVIRONMENT. -CR

12

FSM vs Planning

FSM Planning
- How - What

Let’s compare finite state machines to planning. A finite state machine
tells an AI exactly how to accomplish his goals. A planning system tells
the AI what his goals and actions are, and lets the AI decide how to
sequence actions to satisfy goals.

13

FSM vs Planning

FSM Planning
- How - What
- Procedural - Declarative

Another way to say this is that finite state machines are procedural
programming, while planning is declarative.

I’ll explain later how we used these two systems together.

14

 Motivation

My motivation for going down this path was at the beginning of
preproduction for FEAR, when I was looking at all of the behaviors
designers were asking for. I figured that there’s only one of me, but
there are lots of AI. If these AI are really so damn smart, I should be
able to delegate some of my workload to these guys, we’ll be in good
shape. If we want squad behavior in addition to individual unit
behavior, it’s going to take more man-hours to develop. If they can
figure out some things on their own, then we’ll be all set!

15

Here’s the Plan:

• STRIPS Planning Overview
• Planning in F.E.A.R.
• Differences from STRIPS
• Squad Behaviors & Communication
• Beyond F.E.A.R.

This talk focuses on demonstrating how planning improved the process
of developing character behaviors for FEAR, how planning integrated
with our tools, and how it supported higher level squad behaviors and
communication.

We’ll start with a brief overview of STRIPS planning. Then we’ll show
how we used planning in FEAR. We’ll talk about how our planning
system differs from STRIPS. Then we’ll talk about how planning
impacts squad behaviors. And we’ll wrap up with some discussion of
where we can go from here.

CR: NOT COVERING STRIPS DETAILED (TOO ACADEMIC)

 NOT COVERING SQUAD BEH., SINCE ESSENTIALLY AD HOC
AND NOTHING TO DO WITH PLANNING

16

What is Planning?

• Planning is a formalized process of
searching for sequence of actions to
satisfy a goal.

• Process is called “Plan Formulation.”

17

STRIPS Planning

…in a nutshell

The planning system that we implemented for FEAR most closely
resembles the STRIPS planning system from academia. Here is a very
brief overview of STRIPS planning.

18

STRIPS Planning

STRIPS =
STanford Research Institute
Problem Solver

STRIPS was developed at Stanford in 1970, and the name is simply an
acronym for the STanford Research Institute Problem Solver.

19

STRIPS Planning

• STRIPS Goal:
Desired state of the world to reach.

• STRIPS Actions:
– Preconditions
– Effects

STRIPS consists of goals and actions, where goals describe some
desired state of the world to reach, and actions are defined in terms of
preconditions and effects. An action may only execute if some
preconditions are met, and each action changes the state of the world
in some way.

20

States

A word about what we mean by “states”…

21

States: FSM

 Attack Search

When we talk about states in the context of a Finite State Machine,
we’re talking about procedural states, which update every frame, run
logic, play animations, create effects, and fire weapons.

22

States: Planning
Represented as a logical sentence:

AtLocation(Home) ^ Wearing(Tie)

Represented as a vector:
(AtLocation, Wearing) = (Home, Tie)

In planning, we represent the state of the world as a conjunction of
literals. Another way to phrase it is to say that we represent the state of
the world as an assignment to some set of variables that collectively
describe the world at some point in time. In this slide we are
representing the state where someone is at home and wearing a tie.
We can represent it as a logical expression, or as a vector of variable
values.

23

States: Planning
Example: Lemonade Stand

(weather, #lemons, $$)=
(? , ,) or

(, ,)

24

Desired (Goal, Final) State
Example: Lemonade Stand

(weather, #lemons, $$)=
(-- , -- ,)

[slide added by C. Rich]

The desired final state, which is also a vector of variables, may have
“don’t care” values. E.g., for the lemonade stand, all I really care about
at the end is that I have a pile of money. I don’t really care how many
lemons I have left or the weather, though obviously the number of
lemons and the weather will affect my sales. Note there is a clue here:
If all I care about is the amount of money, if I have some other action
(other than selling lemonade) which can get me to that state (such as
robbing a bank :-), then I should consider planning to do it.

-C. Rich

25

STRIPS Planning Example

Here is an example of how STRIPS works. Let’s say that Alma is
hungry.

26

STRIPS Planning Example

Alma could call Domino’s and order a pizza to satisfy her hunger.

27

STRIPS Planning Example

But Alma can only order a pizza if she has the phone number for
Domino’s.

28

STRIPS Planning Example

Pizza is not her only option however. Alternatively, she could bake a
pie.

29

STRIPS Planning Example

But she can only bake a pie if she has a recipe.

30

STRIPS Planning Example

State: (phone#, recipe, hungry?)
Goal: (-- , -- , NO)

(, -- ,YES) (, -- ,NO)

(-- , ,YES) (-- , ,NO)

So, Alma’s goal is to get to a state of the world where she is not hungry.
She has two actions she can take to satisfy that goal: calling Domino’s
or baking a pie. If she is currently in a state of the world where she has
the phone number for Domino’s, then she can formulate the plan of
calling Domino’s to satisfy her hunger. Alternatively, if she is in the
state of the world where she has a recipe, she can bake a pie.

31

STRIPS Planning Example

State: (phone#, recipe, hungry?)
Goal: (-- , -- , NO)

 (, ,NO)

(, ,YES)

 (, ,NO)

If Alma is in the fortunate situation where she has both a phone number
and a recipe, either plan is valid to satisfy the goal. We’ll talk later
about ways to force the planner to prefer one plan over another. If
Alma has neither a phone number or a recipe, she is out of luck; there
is no possible plan that can be formulated to satisfy her hunger.

32

STRIPS Planning Example

These examples show trivially simple plans with only one action, but in
reality a plan may have an arbitrary number of actions, chained by
preconditions and effects. For instance, if ordering pizza has a
precondition that Alma has enough money, the satisfying plan may
require first driving to the bank.

33

STRIPS Planning Example

State: (phone#, recipe, hungry?)

Action
Preconditions: (, -- , --)
Effects:

Delete List: Hungry(YES)
Add List: Hungry(NO)

We have previously described what a Goal is in STRIPS. Now we will
describe an Action. A STRIPS Action is defined by its Preconditions
and Effects. The Preconditions are described in terms of the state of
the world, just like we defined our Goal. The Effects are described with
list of modifications to the state of the world. First the Delete List
removes knowledge about the world, then the Add List adds new
knowledge. So, the Order Pizza Action first removes knowledge that
Alma is hungry, then adds knowledge that she is not hungry.

34

STRIPS Planning Example

Now, back to our original example, there are two possible plans for
feeding Alma. But what if instead we are planning for Paxton Fettel,
who is a cannibal?

35

STRIPS Planning Example

Neither of these plans will satisfy someone who only eats human flesh.

36

STRIPS Planning Example

We need a new Action to satisfy Fettel. The Eat Human action has a
precondition that we have a fork and knife.

37

STRIPS Planning Example

So, we have three possible plans to satisfy hunger, but only a subset of
these plans are available to each type of character. Only two are
suitable for Alma, and one is suitable for Paxton Fettel. This is
essentially what we did for FEAR.

38

STRIPS Planning Example

…but instead of planning ways to satisfy hunger, we were planning
ways of eliminating threats. We can satisfy the goal of eliminating a
threat by firing a gun at the threat, but the gun needs to be loaded, or
we can use a melee attack, but we have to move close enough.

So now I’ve shown you another way to implement behaviors that we
could have already implemented with a Finite State Machine. So
what’s the point?

39

Here’s the Plan:

• STRIPS Planning Overview
• Planning in F.E.A.R.
• Differences from STRIPS
• Squad Behaviors & Communication
• Beyond F.E.A.R.

It’s easiest to understand the benefits of a planning system by seeing
how it helped the development of AI behaviors in FEAR. Before we
look at the implementation details, and how our system differs from
STRIPS, we’ll look at some videos that illustrate how we used the
system.

40

Design Philosophy

Designer’s job is:
Create environments that allow AI to

showcase their behaviors.

Designer’s job is NOT:
Script behavior of individual AI.

The design philosophy at Monolith is that the designer’s job is to create
interesting spaces for combat, packed with opportunities for the AI to
exploit. For example, spaces filled with furniture for cover, glass
windows, and multiple entries for flanking.

Designers are not responsible for scripting the behavior of individuals,
other than for story elements. This means that the AI need to
autonomously use the environment to satisfy their goals.

NOTE CONTRAST WITH PHILOSOPHY OF HALO3 (DISCUSSION
AT END?) -CR

41

Planning Video #1

If we simply drop an AI into the world, and let him see the Player, the AI
will do…. nothing. This is because we have not yet given him any
Goals.

[Click for video]

42

Planning Video #1

In our world editor, we assign a Goal Set to each AI. These Goals
compete for activation, and the AI uses the Planner to try to satisfy the
highest priority Goal.

VERY SIMILAR TO HALO3, EXCEPT AS WE SHALL SEE,
DECOMPOSITION HIERARCHIES ARE CREATED ON THE FLY. -CR

43

Planning Video #1

Zooming in to the AI properties, we see that by default a new AI has
Goal Set None.

44

Planning Video #1

To rectify this, we can go into our Game Database editor and create a
new Goal Set, which we’ll call GDC06.

45

Planning Video #1

Zooming in we see that the new GDC06 Goal Set includes the Goals
Patrol and KillEnemy.

46

Planning Video #1

So now we assign the AI the new GDC06 Goal Set in the world editor.

47

Planning Video #2

Now, when the soldier Patrols and when he sees us, his KillEnemy
Goal takes priority, and he starts to attack.

JUST LIKE IN HALO3. -CR

[Click for video]

48

Planning Video #3

Now let’s look at an Assassin in the exact same level, with the exact
same Goal Set.

He’s satisfying the Goals in different ways than the soldier. He patrols
by running cloaked and climbing onto the wall, and attacks by lunging
at the Player.

[Click for video]

49

Planning Video #4

Finally, let’s look at a Rat with the exact same Goal Set in the same
level.

The Rat patrols, and never attacks at all. What we’re seeing here is
three different characters with an identical Goal Set, but the Goal Set is
only half of the picture. These characters each have a different Action
Set, providing the Actions that the character may sequence to satisfy
his Goals.

[Click for video]

50

Planning Video #4
Soldier Assassin Rat

So what we’re seeing is that the Soldier, Assassin, and Rat have the
exact same Goal Set, but very different Action Sets.

The Soldier’s Action Set includes Actions for firing weapons, while the
Assassin’s Action Set has Lunges and Melee attacks. The Rat has no
means of attacking at all, so he fails to formulate a valid plan to satisfy
the KillEnemy Goal, and he falls back to the lower priority Patrol Goal.

51

Benefits of Planning

1. Decoupling Goals & Actions
2. Layering Behaviors
3. Dynamic Problem Solving

So, the videos illustrate the first of three benefits of a planning system.
The first benefit is the ability to decouple Goals and Actions, to allow
different types of characters to satisfy Goals in different ways.

52

Decoupling Goals & Actions

In our previous generation of AI systems, we ran into the classic AI
problem of the Mime and the Mutant. No One Lives Forever 2 has
mimes, and Tron2.0 had mutant virus characters.

53

Decoupling Goals & Actions

AttackFromCover

tt

t

t

t

Priority: 8.0

Sensors: Vision, CoverNodes

Patrol

tt

t

t

t

Priority: 1.0

Sensors: PatrolNodes

Investigate

tt

t

t

t

Priority: 3.0

Sensors: HearDisturbance

Search

tt

t

t

t

Priority: 6.0

Sensors: Vision, SearchNodes

Our previous AI system was used to develop both NOLF2 and TRON
2.0. Our AI system consisted of Goals that competed for activation, just
like they do in FEAR, in the old, system these Goals each contained an
embedded Finite State Machine. There was no way to separate the
Goal from the plan used to achieve that Goal.

So if we wanted any variation between the behavior of a mime and the
behavior of a mutant, or other character types, we had to add branches
to the embedded state machines. Over the course of two years of
development, these state machines become overly complex, bloated,
and unmanageable.

54

Decoupling Goals & Actions

For example, we had out of shape policemen in NOLF2 who needed to
stop and catch their breath every few seconds while chasing. This
required a branch in the state machine for the Chase Goal to check if
the character was out of breath, when only one type of character ever
exhibits this behavior.

With a planning system, we can give each character their own Action
Set, and in this case only the policemen would have the Action for
catching their breath. This unique behavior would not add any
unneeded complexity to other characters.

55

Decoupling Goals & Actions

+ =

The modular nature of Goals and Actions benefited us on FEAR, when
we decided to add a new enemy type late in development. We added
flying Drones with a minimal amount of effort by combining Goals and
Actions from characters we already had.

By combining the Ghosts Actions for flying movement with the Soldier’s
Actions for firing weapons and using tactical positions, we were able to
create a unique new enemy type in a minimal amount of time, with very
little new code.

56

Decoupling Goals & Actions

AttackFromCover

tt

t

t

t

Priority: 8.0

Sensors: Vision, CoverNodes

Patrol

tt

t

t

t

Priority: 1.0

Sensors: PatrolNodes

Investigate

tt

t

t

t

Priority: 3.0

Sensors: HearDisturbance

Search

tt

t

t

t

Priority: 6.0

Sensors: Vision, SearchNodes

And there’s another good reason for decoupling Goals and Actions. In
our previous system, Goals were self-contained black boxes, and did
not share any information with each other. This can be problematic.

57

Decoupling Goals & Actions

This is very similar to a problem we had in NOLF2. We had all of these
objects that a character could interact with. For example someone
could sit down at a desk and do some work. If you shoot or stun
someone at a desk, you would expect him to slump over.

Instead what we were seeing is that the AI would finish his work, stand
up, push in his chair, and then pass out and fall to the floor.

58

Decoupling Goals & Actions

Work

tt

t

t

t

Priority: 8.0

Death

tt

t

t

t

Priority: 100.0

Stunned

tt

t

t

t

Priority: 80.0

The problem was that only the Work Goal knew that the AI was in a
sitting posture, interacting wit the desk. This was because there was no
information sharing between Goals, so each Goal had to exit cleanly,
and get the AI back into some default state where he could cleanly
enter the next Goal.

59

Decoupling Goals & Actions
Work

Recoil
Stand

Up

Sit
Down

Animate

Goto

Priority: 8.0

Death

Priority: 100.0

Stunned

Priority: 80.0

Working Memory

Decoupling the Goals and Actions forces them to share information
through some external working space. Now all Goals and Actions have
access to information including whether the AI is sitting or standing, and
interacting with a desk or some other object. We can take this
knowledge into account when we formulate a plan to satisfy the Death
Goal, and slump over the desk as expected.

THIS IS REALLY OF FEATURE OF THE PRIORITIZED GOAL
ARCHITECTURE, NOT PLANNING SPECIFICALLY. -CR

60

Benefits of Planning

1. Decoupling Goals & Actions
2. Layering Behaviors
3. Dynamic Problem Solving

The second benefit of the planning approach is facilitating layering of
behaviors. We were able to evolve complex combat behavior oevr
three years of development of FEAR by layering simple atomic actions.

61

Layering Behaviors

You can thinks of the basic combat behavior in FEAR as a seven layer
dip. We get deep, complex tactical behavior by layering a variety of
simple atomic behaviors. We wanted the FEAR AI to do everything for
a reason. This is in contrast to the NOLF2 AI, which would run to valid
cover and then pop in and out randomly like a shooting gallery. FEAR
AI always try to stay covered, never leave cover unless threatened and
other cover is available, and fire from cover to the best of their ability.

62

Layering Behaviors

We start with the basics; the beans. AI fire their weapons when they
detect the Player.

The things to note here are that we are simply adding goals and actions
to our lists (goal sets and action sets). We do not need to specify
anywhere which actions are associated with which goals, or which
actions can chain with which other actions. The AI can figure this out
for themselves based on preconditions and effects defined within the
actions. Also, while it appears on this slide that there is some kind of
one-to-on correspondence between goals and action, this is actually
not the case as we’ll see in future layers.

63

Layering Behaviors

We start with the basics; the beans. AI fire their weapons when they
detect the Player.

Lighting effects have been disabled for this series of videos so that it’s
easier to focus on the AI behavior.

[Click for video]

64

Layering Behaviors

We want the AI to value his life, so we add the Guacamole. The AI
dodges when a gun is aimed at him. The new additions are highlighted
in blue. We add a new Dodge goal, and two possible actions for
satisfying that goal.

65

Layering Behaviors

We want the AI to value his life, so we add the Guacamole. The AI
dodges when a gun is aimed at him.

[Click for video]

66

Layering Behaviors

Next we add the Sour Cream. When the Player gets close enough, use
melee attacks instead of wasting bullets. We do not need to add any
additional goals here. We only add a new action for melee attacks as
an alternative way of satisfying the existing KillEnemy goal.

67

Layering Behaviors

Next we add the Sour Cream. When the Player gets close enough, use
melee attacks instead of wasting bullets.

[Click for video]

68

Layering Behaviors

If AI really value their lives, they won’t just dodge, they’ll take cover.
This is the salsa.

We add the Cover goal, which makes an AI who is not currently in
cover get to cover. He gets there with the GotoNode action, and then
attacks in a context-sensitive manner with the AttackFromCover action.

69

Layering Behaviors

If AI really value their lives, they won’t just dodge, they’ll take cover.
This is the salsa.

[Click for video]

70

Layering Behaviors

We previously added the ability to dodge, but have not provided any
way to dodge in the context of taking cover. We can add another
context-sensitive Dodge Action to handle this, still as part of the salsa
layer.

71

Layering Behaviors

We previously added the ability to dodge, but have not provided any
way to dodge in the context of taking cover. We can add another
Dodge Action to handle this.

[Click for video]

72

Layering Behaviors

Dodging is not always enough, so we add the Onions; blind firing. If the
AI gets shot in cover, he blind fires for a while to make himself harder to
hit. This is an alternative way to satisfy the kill enemy goal.

73

Layering Behaviors

Dodging is not always enough, so we add the Onions; blind firing. If the
AI gets shot in cover, he blind fires for a while to make himself harder to
hit.

[Click for video]

74

Layering Behaviors

The cheese is where things really get exciting. We give the AI the
ability to reposition when his current cover position is invalidated. The
Ambush action basically lets the AI hide somewhere when cover is not
working out. It just chooses a different type of node for the AI to go to,
so it can be satisfied with our existing GotoNode action.

75

Layering Behaviors

The cheese is where things really get exciting. We give the AI the
ability to reposition when his current cover position is invalidated.

Here we see the effects of level designers adding additional cover
nodes, so that the AI moves around behind the box, and the Ambush
goal, which gets the AI to leave cover when he’s taking fore, and try to
hide until cover seems valid again.

[Click for video]

76

Layering Behaviors

The final layer is the olives, which really bring out the flavor. For this
layer, we add dialogue that lets the Player know what the AI is thinking,
and allows the AI to communicate with squad members. We’ll discuss
this a little later.

77

Layering Behaviors

Kill Enemy

Attack Ranged

So the point I’m trying to make is that with a planning system, we can
just toss in Goals and Actions…

78

Layering Behaviors

Kill Enemy

Attack Ranged

Attack Melee

79

Layering Behaviors

Kill Enemy

Attack Ranged

Attack Melee

Dodge Shuffle

Dodge Roll

Dodge

80

Layering Behaviors

Kill Enemy

Attack Ranged

Attack Melee

Dodge Shuffle

Dodge Roll

Dodge

Cover

Goto

Dodge Covered

81

Layering Behaviors

Kill Enemy

Attack Ranged

Attack Melee

Dodge Shuffle

Dodge Roll

Dodge

Cover

Goto

Dodge Covered

Blind Fire

82

Layering Behaviors

Kill Enemy

Attack Ranged

Attack Melee

Dodge Shuffle

Dodge Roll

Dodge

Cover

Goto

Dodge Covered

Blind Fire

Ambush

…But we never have to manually specify the transitions. We never
have to specify which actions are associated with which goals, which
actions can transition to which other actions, or which goals can
transition to other goals.

83

Layering Behaviors

Kill Enemy

Attack Ranged

Attack Melee

Dodge Shuffle

Dodge Roll

Dodge

Cover

Goto

Dodge Covered

Blind Fire

Ambush

…But we never have to do this. This is where things in an FSM get
really hairy. In the planning system, the AI figures the dependencies
out at run-time based on the Goal state and the preconditions and
effects of Actions.

84

Layering Behaviors

Late in development of NOLF2, we added the requirement that AI
would turn on lights whenever entering a dark room. In our old system,
this required us to revisit the state machine inside every goal and figure
out how to insert this new state. This was both a headache, and a risky
thing to do so late in development. In the FEAR planning system,
adding this behavior would have been much easier, as we could have
just added a TurnOnLights action, and added a LightsOn precondition
to the Goto action. This would affect every Goal that was satisfied by
using the Goto action.

85

Benefits of Planning

1. Decoupling Goals & Actions
2. Layering Behaviors
3. Dynamic Problem Solving

Finally, the third benefit of a planning system is the dynamic problem
solving ability that replanning gives the AI.

86

Dynamic Problem Solving

Here we see a patrolling AI who walks in the door, sees the player and
starts firing.

[Click for video]

87

Dynamic Problem Solving

If we run this again, but this time physically hold the door shut with our
body, we see the AI try to open the door and fail. He then replans and
decides to kick the door. When this fails, he replans again and decides
to dive through the window and ends up close enough to use a melee
attack! We can watch the AI in the security camera.

[Click for video]

88

Planning Algorithm

[Slide added by C. Rich]

89

Cost Per Action

Remember we said earlier that if Alma has both the phone number and
the recipe, either plan is valid to satisfy her hunger.

90

Cost Per Action

2 8

If we add a cost per action, we can force Alma to prefer one action over
another. If she cannot satisfy the preconditions of ordering pizza, she
can fall back to baking a pie.

91

Cost Per Action

2 8

*A
This is where our old friend A* comes in! Now that we have a cost
metric, we can use this cost to guide our A* search for the lowest cost
sequence of actions to satisfy some goal.

92

Cost Per Action

A
Normally we think of A* as a means of finding a navigational path, and
use it in this way in FEAR too, to find a path through the navigational
mesh. But in fact, A* is really a general search algorithm.

93

Cost Per Action

A* Navigation Planning

Nodes: NavMesh Polys World States

Edges: NavMesh Poly Actions
Edges

Goal: NavMesh Poly World State

A* can be used to search for the shortest path through any graph of
nodes connects by edges. In the case of navigation, it is intuitive to
think of navigational mesh polygons as nodes, and the edges of the
polygons as edges in the graph that connect that connect one node to
another. In the case of planning, the nodes are states of the world, and
we are searching to find a path to the goal state. The edges connecting
different states of the world are the actions that lead the state of the
world to change from one to another.

94

Here’s the Plan:

• STRIPS Planning Overview
• Planning in F.E.A.R.
• Differences from STRIPS
• Squad Behaviors & Communication
• Beyond F.E.A.R.

95

Dialogue Integration

“What’s your status?”

For FEAR, the combat dialogue system was completely separate from
the action planning system. We manually hooked dialogue lines into
the code in various places. It took a lot of trial and error to get AI saying
the right things at the right times. For example, in this screenshot
where the AI’s head has completely disconnected, there is really no
reason for his ally to ask him “What’s your status?” It’s pretty obvious
what his status is. Situations like this are not always obvious when you
are looking at C++ code trying to figure out where to insert dialogue
lines.

If we want an order of magnitude more dialogue, we need a system
managing dialogue that is as well structured and well informed as the
system used to plan actions.

96

Unified Planning for Actions and Speech

OpenDoor -or- “Open the door!”
Precondition:

door is closed

Effect:
door is open

The complication comes when AI can accomplish the same effect by
either acting or speaking.

For example, a soldier may decide to open the door himself, or order a
squad member to open the door. In order to decide whether to speak
to someone else or take a physical action yourself, we need to consider
a number of factors when weighting the costs of these options. We
need to consider the physical situation, like who is closer to the door,
and the social situation, like who is the higher ranking member of the
squad. A soldier does not usually shout orders to a superior.

97

Unified Planning for Actions and Speech

“Look out! Grenade!”
Precondition:

Effect:

We are looking at how we can seamlessly integrate dialogue into the
action planning system. We can think of dialogue lines serving the
same purpose as actions in a plan, and we should be able to formalize
the lines in the same way we did actions. For anything the AI says,
there are preconditions for why the AI should say it, and effects that the
AI expects saying the line to have on the world.

For example, if there is a grenade coming near an AI’s ally, the AI
expects that shouting “Look out! Grenade!” will have the effect of his
ally getting some distance form the grenade.

98

“… just like the marines in Half-Life 1”

When FEAR shipped, it was great to see that the AI was well received.
Many people commented that the soldier AI reminded them of the
Marines in Half Life 1.

99

“… just like the marines in Half-Life 1”

1998 2005

Half Life 1 shipped in 1998, and FEAR shipped in 2005. It seems that
we haven’t made much progress in seven years, and what’s worse,
people seem happy about this!!

There has to be more we can do with game AI. My opinion is that we
need an order of magnitude more interaction, cooperation, and
communication between AI, and between AI and the player. To
achieve this, we need to investigate new techniques.

100

If we look 20 years in the past, 20 years ago we were playing Super
Mario Bros on the NES. Game have come a long way in 20 years, and
today every game has incredible graphics. In the next 20 years, AI is
going to be what differentiates one game from another.

101

MIT Media Lab:
Cognitive Machines Group

http://www.media.mit.edu/cogmac

In the Cognitive Machines group we use robots and computer games
as platforms for researching the use and understanding of language.
Our goal is to create robots and characters that can use language to
communicate the way people do.

At the Media Lab, we are supposed to be looking 20 years into the
future.

