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State-Driven Agent Design 

Artificial Intelligence for  
Interactive Media and Games 

[Based on Buckland, Chapter 2 and lecture by Robin Burke] 

Outline (2 days) 

  State machines 
•  motivation 
•  West World state examples 
•  implementation code 

  Messages 
•  motivation 
•  West World message examples 
•  implementation code 

  Advanced concepts 
•  hierarchical state machines 
•  non-deterministic state machines (Markov) 

  Homework #2 – Bar Fly (due Sunday midnight) 
  Review Chapter 3 (steering) 
  Read/prepare Chapter 4 for next week (Simple Soccer) 
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(Finite) State Machines (FSM’s) 

  Familiar, easy to understand 
•  standard graphical notation 
•  good for communication 
•  still most commonly used AI method in games 
•  easy to combine with other methods (goals, etc.) 

  Often very badly implemented 
•  “spaghetti” code (if/then/else, switch, goto) ---        

a nightmare to maintain 
•  we are going to study a generic object-oriented 

implementation 
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West World 

  A “laboratory” for studying FSM’s 
•  no graphics -- simple plain-text to console 
•  allows us to study all the code in detail 

  Simulation-type game 
•  two characters (agents):  miner Bob and wife Elsa 
•  next homework: add character Sal the bar fly 
•  four locations: gold mine, bank, saloon, home 
•  use FSM’s to model their activities 

[get to do your own modeling in Homework #3] 
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Miner State Machine 
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(Saloon) 

Miner’s Wife State Machine 
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(all at home) 
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OO State Machine Implementation 

  Each state is an object 
•  encapsulates all information about the state 
•  including how it decides which state (if any) to 

transition to next 
•  generic template class, specific classes for game 
•  design issue:  states as singletons? 

  Each agent has its own state machine 
•  generic template class 

–  current state 
–  previous state (for “blips”) 
–  global state (factor out shared code) 
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OO State Machine Implementation   

  Calling sequence 

•  game   agent:  “update yourself” 

•  agent   state machine:  “update yourself” 

•  state machine   current state:  

“you are being entered for first time” 

“execute yourself” 

“you are being exited” 
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* 

* 

States as Singletons 

  Each state class, e.g., QuenchThirst, has only 
a single instance 
•  Benefit: don't need to manage allocation and 

destruction of state objects 
•  Drawback: since all agents share same state 

objects, agent-specific information must be stored 
in agent (even if  logically associated with state) 

–  not a problem in West World, since only one miner, wife 
with distinct states 

–  in Simple Soccer, states are also singletons, even 
though there are multiple players (agents) with same 
state machine 
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Singleton Design Pattern 
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// ------------- MyClass.h ------------------- 
class MyClass  
{ 
private: 
   MyClass(){} 
   ~MyClass(){} 
   MyClass(const MyClass&); 
   MyClass& operator= (const MyClass&); 

   int m_iNum; // member data 

public: 
   static MyClass* Instance(); 
   int GetVal() const { return m_iNum; } // access data 
} 

// ------------- MyClass.cpp ------------------- 
MyClass* MyClass::Instance() 
{ 
   static MyClass instance; 
   return &instance; 
} 

MyClass::Instance()->GetVal(); 

Messaging – Why? 

  Miner and wife in WWwW don’t really interact 
•  separate state machines running independently 
•  states could “communicate” by shared variables 

–  poor modularity 
–  hard to add new agents which interact with existing 

  A solution to the “perception” problem 
•  avoids expensive polling algorithms (busy-wait) 

–  e.g., if guard does nothing until player enters room, it 
should not be constantly be checking “did player enter” 
on every update cycle 

–  instead, have player send a message to every entity in 
the room when she enters the room 

  Modern games use messaging extensively 
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Messaging - Implementation Issues 

  Requires unique id registry for every 
participating entity 
•   see BaseGameEntity and EntityRegistry 

  Different delivery variations 
•  point-to-point (messages addressed to specific 

recipients)  -- as in Buckland code 
•  broadcast (all messages broadcast to all entities 

--- expensive) 
•  subscription based on  

–  location (e.g., room) 
– message type 

•  delayed delivery -- Buckland 
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Miner’s Wife State Machine (extended) 
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West World Message Types 

  HiHoneyImHome 
•  sent by Bob to Elsa when entering 

GoHomeAndSleepTilRested state 
•  Elsa responds in WifesGlobalState by changing 

state to CookStew 

  StewReady 
•  sent by Elsa to self (with delay) when entering 

CookStew state 
•  Elsa responds in CookStew state by sending 

StewReady message (note reuse) to Bob 
•  Bob responds in GoHomeAndSleepTilRested 

state by changing state to EatStew (blip) 
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WestWorldWithMessaging Demo 

  Various text strings printed to console by Elsa 
and Bob at various points, e.g. 
•  “putting the stew in the oven” 
•  “smells Reaaal goood Elsa!” 
•  don’t confuse these “messages” with 

MessageType’s 

  This is programming! 
•  with all the bugs and debugging 
•  if a message not handled properly or ignored, 

whole simulation can stall 
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Hierarchical State Machines 

  Why? 
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search 

goto  
disposal 

goto 
 trash 

see trash 

trash disposed 

have trash 
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Interruptions (e.g., Alarms) 
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search 

goto  
disposal 

goto 
 trash 

see trash 

trash disposed 

have trash 

recharge 

low power recharged 

recharge 

low power recharged 

recharge 

low power recharged 

(search) (trash) 

(disposal) 

6 - doubled the number of states! 

Add Another Interruption Type 
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hide 

battle all clear 

(search/recharge) 

hide 

hide 

hide 

hide 
hide 

12 - doubled the number of states again! 
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Hierarchical State Machines 
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search 

goto  
disposal 

goto 
 trash 

see trash 

trash disposed 

have trash 

clean 

recharge 
low power 

recharged 

•  leave any state in (composite) ‘clean’ state when ‘low power’ 

•  ‘clean’ remembers internal state and continues when returned to 
via ‘recharged’’ 
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Add Another Interruption Type 

search 

goto  
disposal 

goto 
 trash 

see trash 

trash disposed 

have trash 

clean 

recharge 
low power 

recharged 

hide 
battle 

all clear 

7 states (including composite) vs. 12 

battle all clear 

hide 
(recharge) 

(clean) 
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Cross-Hierarchy Transitions 

  Why? 
•  suppose we want robot to top-off battery if it 

doesn’t see any trash 

search 

goto  
disposal 

goto 
 trash 

see trash 

trash disposed 

have trash 

clean 
recharge 

low power 

recharged 
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Cross-Hierarchy Transitions 

search 

goto  
disposal 

goto 
 trash 

see trash 

trash disposed 

have trash 

clean 

recharge 
low power 

recharged 

less than 75% power 
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Hierarchical State Machines 

  'Blip' states in Buckland implementation are simple 
case (remembers single previous state) 

  General case has full push-down stack 

  See Millington Sec. 5.3.9 for more details 

IMGD 400X (B 08) 25 

search 

goto  
disposal 

goto 
 trash 

see trash 

trash disposed 

have trash 

clean 

recharge 
low power 

recharged 

Non-deterministic State Machines 
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Start 

Approach 

Aim &  
Jump & 
Shoot 

Aim &  
Slide Left 
& Shoot 

Aim &  
Slide Right 

& Shoot .3 
.3 

.4 

.3 
.3 

.4 

•  multiple transitions for same event 
•  label each with probability (Σ=1) 
•  state machine randomly chooses at run time, 

 based on probabilities 
•  adds variety to actions  
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Non-deterministic State Machines 

  Also known as "Markov Models" 
  Similar effect achieved in miner's wife states using ad 

hoc code rather than general machine 

  See Millington, Sec. 5.5.2 for more details 
  Similar variety effect can also be obtained with fuzzy 

logic (Chapter 10) 
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VisitBathroom DoHouseWork 

.9 
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Coming up... 

  Homework #2 – Bar Fly (due Sunday 
midnight) 

•  adding another character/agent to West World 

•  new states and messages 

  Review Chapter 3 (steering) 

  Start reading Chapter 4 to prepare for next 
week (Simple Soccer) 
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