State-Driven Agent Design

Artificial Intelligence for
Interactive Media and Games

Professor Charles Rich
Computer Science Department
rich@wpi.edu

[Based on Buckland, Chapter 2 and lecture by Robin Burke]

IMGD 400X (B 08)

Outline (2 days)

State machines

e motivation

* West World state examples

e implementation code
Messages

e motivation

* West World message examples

e implementation code
Advanced concepts

 hierarchical state machines

e non-deterministic state machines (Markov)
Homework #2 — Bar Fly (due Sunday midnight)
Review Chapter 3 (steering)
Read/prepare Chapter 4 for next week (Simple Soccer)

[IMGD 400X (B 08)

10/31/08

(Finite) State Machines (FSM’s)

= Familiar, easy to understand
 standard graphical notation
* good for communication
« still most commonly used Al method in games
» easy to combine with other methods (goals, etc.)

= Often very badly implemented

* “spaghetti’ code (if/then/else, switch, goto) ---
a nightmare to maintain

* we are going to study a generic object-oriented
implementation

West World

= A “laboratory” for studying FSM'’s
* no graphics -- simple plain-text to console
« allows us to study all the code in detail

= Simulation-type game
* two characters (agents): miner Bob and wife Elsa
» next homework: add character Sal the bar fly
« four locations: gold mine, bank, saloon, home
* use FSM’s to model their activities

[get to do your own modeling in Homework #3]

10/31/08

Miner State Machine

Rested

GOHOMEA“GSIEQD I llResteD

@) V921 meD 400x (8 08)

Miner’s Wife State Machine

E/isitBathroom) ,?@((O
A

(all at home)

(DoHouseworkj

@) V921 meD 400x (8 08)

X'\\'\ 10 ChanCe

10/31/08

OO0 State Machine Implementation

= Each state is an object
* encapsulates all information about the state

¢ including how it decides which state (if any) to
transition to next

* generic template class, specific classes for game
* design issue: states as singletons?

= Each agent has its own state machine

* generic template class
— current state
— previous state (for “blips”)
— global state (factor out shared code)

Y P[IMGD 400X (B 08)

OO0 State Machine Implementation

= Calling sequence
* game & agent: “update yourself”’
* agent & state machine: “update yourself”
» state machine & current state:
“you are being entered for first time”
“execute yourself’

“you are being exited”

Y P[IMGD 400X (B 08)

10/31/08

BaseGameEntity Miner

Update() : void ~ ====-=- | -] Thirst+=1; %

Update() : void GetFSM() : StateMachine<Miner>*

tine->Update()

Owner

sulyoeNeIRIS

StateMachine<Miner>

SetGlobalState(State<Miner>*) : void G ->Execute(Owner)

Update(): void -——==~"""""-~["77° CurrentState->Execute(Owner)
ChangeState(State<Miner>*) : void
RevertToPreviousState() : void

3 o
<O]
S LB *
2 |0 o
2 B |z
i L - MinerGlobalState
State<Miner>
Enter(Miner*) : void
Enter(Miner*) : void Execute(Miner*) : void
___________ Execute(Miner*) : void Exit(Miner*) : void
<<parameter>> | Exit(Miner®) : void Instance() : this
EnterMineAndDigF isi AndD if GoHomeAndSleepTilRested QuenchThirst
Enter(Miner*) : void Enter(Miner*) : void Enter(Miner*) : void Enter(Miner*) : void
Execute(Miner) : void Execute(Miner*) : void Execute(Miner) : void Execute(Miner*) : void
Exit(Miner*) : void Exit(Miner*) : void Exit(Miner*) : void Exit(Miner*) : void
Instance() : this Instance() : this Instance() : this Instance() : this

States as Singletons

= Each state class, e.g., QuenchThirst, has only
a single instance

* Benefit: don't need to manage allocation and
destruction of state objects

* Drawback: since all agents share same state
objects, agent-specific information must be stored
in agent (even if logically associated with state)

— not a problem in West World, since only one miner, wife
with distinct states

— in Simple Soccer, states are also singletons, even
though there are multiple players (agents) with same
state machine

) V9P maD 400x (B 08)

10/31/08

10/31/08

Singleton Design Pattern

class MyClass
{
private:
MyClass(Q{}
~MyClassQ{}
MyClass(const MyClass&);
MyClass& operator= (const MyClass&);

int m_iNum; // member data

public:
static MyClass* Instance();
int GetVal() const { return m_iNum; } // access data

}

Jf ==ememmmemsans MCIaSS.@p =meeremsessmsessn=s
MyClass* MyClass::Instance()
{

static MyClass instance;
return &instance;

}

MyClass: :Instance()->GetVal(Q);

Messaging — Why?

= Miner and wife in WWwW don't really interact
» separate state machines running independently

* states could “communicate” by shared variables
— poor modularity
— hard to add new agents which interact with existing

= A solution to the “perception” problem

* avoids expensive polling algorithms (busy-wait)
— e.g., if guard does nothing until player enters room, it
should not be constantly be checking “did player enter”
on every update cycle

— instead, have player send a message to every entity in
the room when she enters the room

= Modern games use messaging extensively

10/31/08

Messaging - Implementation Issues

= Requires unique id registry for every
participating entity

see BaseGameEntity and EntityRegistry
= Different delivery variations

* point-to-point (messages addressed to specific
recipients) -- as in Buckland code

» broadcast (all messages broadcast to all entities
--- expensive)

 subscription based on

— location (e.g., room)
— message type

G

* delayed delivery -- Buckland
/ Y21 imcD 400x (B 08)

Miner’s Wife State Machine (extended)

QO
<
[
%
G

T

)Y P1 imaD 400x (B 08)

West World Message Types

= HiHoneylmHome
» sent by Bob to =/sa when entering
GoHomeAndSleepTilRested state

e Elsa responds in WitesGlobalState by changing
state to CookStew

= StewReady

* sent by Elsa to self (with delay) when entering
CookStew state

* Elsa responds in CookStew state by sending
StewReady message (note reuse) to Bob

» Bob responds in GoHomeAndSleepTilRested
state by changing state to EatStew (blip)

©7) VY P imMGD 400X (B 08) 15

WestWorldWithMessaging Demo

= Various text strings printed to console by Elsa
and Bob at various points, e.g.
e “putting the stew in the oven”
* “smells Reaaal goood Elsa!”

» don’t confuse these “messages” with
MessageType's

= This is programming!
 with all the bugs and debugging

* if a message not handled properly or ignored,
whole simulation can stall

©7) VY P imMGD 400x (B 08) 16

10/31/08

10/31/08

BaseGameEntity
Update() : void Update() : void
b . — ! Tolograms) : bool -] et Setachneangentessagers)
8| *)
H P
3
EntityManager Update() : void if (CurentState->OnMessage(Owner, msg))
% *) - void return true;
) b Telegrama) : bool --___ |
D(int) -
i Ovner, msg)
RemoveEntity(BaseGameEntity*)
retum tre
)
7o s et fase;
State<MinersWife>
Enter(MinersWife") : void
Execute(MinersWife®) : void
Exit(Minerswife®)
OnMessage(MinersWife®, Telegrame,) : ool
WifesGlobalState VisitBathroom
Enter(MinersWife*) : void Enter(MinersWife*) : void
Execute(MinersWife*) : void Execute(MinersWife®) : void
Exit(MinersWife*) : void Exit(MinersWife*) : void
lonMessage(MinersWife®, Telegrama) : bool OnMessage(MinersWife*, Telegram&) : bool
DoHouseWork CookStew
Enter(MinersWife*) : void Enter(MinersWife®) : void
Execute(MinersWife®) : void Execute(MinersWife®) : void
Exit(MinersWife*) : void Exit(MinersWife) : void
OnMessage(MinersWife*, Telegrama.) : bool OnMessage(MinersWife®, Telegrama,) : bool
Talagrant Discharge(BaseGameEntity", Telegrama) | _ i
Dispatch(float,int, intint,void®)
Delayed Messages DispatchD) <<sends message>>
*

Hierarchical State Machines

= Why?

see frash

search

have trash

trash disposed [goto
disposal

7)Y/ P 1 IMaD 400X (B 08) 18

Interruptions (e.g., Alarms)

| rechar el | rechargel
search (trash)

recharged low power recharged low power

see trash goto
P—-'[search]—'[trash]

have trash

trash disposed goto

| disposal J

6 - doubled the number of states! recharged low power

()

recharge
disposal

/Pl IMGD 400X (B 08) 19

Y%

Add Another Interruption Type

| hide I
(search/recharge)

all clear battle

C_J—— hide]

12 - doubled the number of states again!

)Y P1 imaD 400x (B 08) 20

10/31/08

10

Hierarchical State Machines

* leave any state in (composite) ‘clean’ state when ‘low power’

« ‘clean’ remembers internal state and continues when returned to

via ‘recharged”

rechargel

clean
low power
see trash gOtO recharged
search trash I

_

have trash

trash disposed [goto
disposal

[IMGD 400X (B 08)

l

/

21

Add Another Interruption Type

7 states (including composite) vs. 12

clean

low power

| hide I
(recharge)

battle

all clear

_

see trash goto

have trash

recharge|

recharged _]

trash disposed l goto I

(disposal

/

[IMGD 400X (B 08)

|

battle
hide I
all clear e

10/31/08

11

Cross-Hierarchy Transitions

= Why?
* suppose we want robot to top-off battery if it
doesn’t see any trash

clean

low power
! rechargel
recharged

see trash

trash disposed

Cross-Hierarchy Transitions

less than 75% power

clean

low power
rechargel
see trash goto recharged
.—Eamh trash I

have trash

trash disposed goto
disposal

10/31/08

12

Hierarchical State Machines

= 'Blip' states in Buckland implementation are simple
case (remembers single previous state)

= General case has full push-down stack

= See Millington Sec. 5.3.9 for more details

/ clean

low power,
recharg;

see trash[goto] recharged

)|
{search J | trash

have trash

trash disposed goto
disposal

J

@) VW21 meD 400x (B 08)

25

Non-deterministic State Machines

» multiple transitions for same event
* label each with probability (Z=1)

« state machine randomly chooses at run time,
based on probabilities

* adds variety to actions

@) V2L meD 400x (B 08)

26

10/31/08

13

Non-deterministic State Machines

= Also known as "Markov Models"

= Similar effect achieved in miner's wife states using ad
hoc code rather than general machine

9

See Millington, Sec. 5.5.2 for more details

= Similar variety effect can also be obtained with fuzzy
logic (Chapter 10)

SR D[
)Y P1 imaD 400x (B 08) 27

Coming up...

= Homework #2 — Bar Fly (due Sunday
midnight)

* adding another character/agent to West World

* new states and messages
= Review Chapter 3 (steering)

= Start reading Chapter 4 to prepare for next
week (Simple Soccer)

e XA
)Y P1 imaD 400x (B 08) 28

10/31/08

14

