
10/31/08

1

Professor Charles Rich
Computer Science Department
rich@wpi.edu

IMGD 400X (B 08) 1

State-Driven Agent Design

Artificial Intelligence for
Interactive Media and Games

[Based on Buckland, Chapter 2 and lecture by Robin Burke]

Outline (2 days)

  State machines
•  motivation
•  West World state examples
•  implementation code

  Messages
•  motivation
•  West World message examples
•  implementation code

  Advanced concepts
•  hierarchical state machines
•  non-deterministic state machines (Markov)

  Homework #2 – Bar Fly (due Sunday midnight)
  Review Chapter 3 (steering)
  Read/prepare Chapter 4 for next week (Simple Soccer)

IMGD 400X (B 08) 2

10/31/08

2

(Finite) State Machines (FSM’s)

  Familiar, easy to understand
•  standard graphical notation
•  good for communication
•  still most commonly used AI method in games
•  easy to combine with other methods (goals, etc.)

  Often very badly implemented
•  “spaghetti” code (if/then/else, switch, goto) ---

a nightmare to maintain
•  we are going to study a generic object-oriented

implementation

IMGD 400X (B 08) 3

West World

  A “laboratory” for studying FSM’s
•  no graphics -- simple plain-text to console
•  allows us to study all the code in detail

  Simulation-type game
•  two characters (agents): miner Bob and wife Elsa
•  next homework: add character Sal the bar fly
•  four locations: gold mine, bank, saloon, home
•  use FSM’s to model their activities

[get to do your own modeling in Homework #3]
IMGD 400X (B 08) 4

10/31/08

3

Miner State Machine

IMGD 400X (B 08) 5

(Saloon)

Miner’s Wife State Machine

IMGD 400X (B 08) 6

(all at home)

10/31/08

4

OO State Machine Implementation

  Each state is an object
•  encapsulates all information about the state
•  including how it decides which state (if any) to

transition to next
•  generic template class, specific classes for game
•  design issue: states as singletons?

  Each agent has its own state machine
•  generic template class

–  current state
–  previous state (for “blips”)
–  global state (factor out shared code)

IMGD 400X (B 08) 7

OO State Machine Implementation

  Calling sequence

•  game  agent: “update yourself”

•  agent  state machine: “update yourself”

•  state machine  current state:

“you are being entered for first time”

“execute yourself”

“you are being exited”

IMGD 400X (B 08) 8

10/31/08

5

*

*

States as Singletons

  Each state class, e.g., QuenchThirst, has only
a single instance
•  Benefit: don't need to manage allocation and

destruction of state objects
•  Drawback: since all agents share same state

objects, agent-specific information must be stored
in agent (even if logically associated with state)

–  not a problem in West World, since only one miner, wife
with distinct states

–  in Simple Soccer, states are also singletons, even
though there are multiple players (agents) with same
state machine

IMGD 400X (B 08) 10

10/31/08

6

Singleton Design Pattern

IMGD 400X (B 08) 11

// ------------- MyClass.h -------------------
class MyClass
{
private:
 MyClass(){}
 ~MyClass(){}
 MyClass(const MyClass&);
 MyClass& operator= (const MyClass&);

 int m_iNum; // member data

public:
 static MyClass* Instance();
 int GetVal() const { return m_iNum; } // access data
}

// ------------- MyClass.cpp -------------------
MyClass* MyClass::Instance()
{
 static MyClass instance;
 return &instance;
}

MyClass::Instance()->GetVal();

Messaging – Why?

  Miner and wife in WWwW don’t really interact
•  separate state machines running independently
•  states could “communicate” by shared variables

–  poor modularity
–  hard to add new agents which interact with existing

  A solution to the “perception” problem
•  avoids expensive polling algorithms (busy-wait)

–  e.g., if guard does nothing until player enters room, it
should not be constantly be checking “did player enter”
on every update cycle

–  instead, have player send a message to every entity in
the room when she enters the room

  Modern games use messaging extensively
IMGD 400X (B 08) 12

10/31/08

7

Messaging - Implementation Issues

  Requires unique id registry for every
participating entity
•  see BaseGameEntity and EntityRegistry

  Different delivery variations
•  point-to-point (messages addressed to specific

recipients) -- as in Buckland code
•  broadcast (all messages broadcast to all entities

--- expensive)
•  subscription based on

–  location (e.g., room)
– message type

•  delayed delivery -- Buckland
IMGD 400X (B 08) 13

Miner’s Wife State Machine (extended)

IMGD 400X (B 08) 14

10/31/08

8

West World Message Types

  HiHoneyImHome
•  sent by Bob to Elsa when entering

GoHomeAndSleepTilRested state
•  Elsa responds in WifesGlobalState by changing

state to CookStew

  StewReady
•  sent by Elsa to self (with delay) when entering

CookStew state
•  Elsa responds in CookStew state by sending

StewReady message (note reuse) to Bob
•  Bob responds in GoHomeAndSleepTilRested

state by changing state to EatStew (blip)
IMGD 400X (B 08) 15

WestWorldWithMessaging Demo

  Various text strings printed to console by Elsa
and Bob at various points, e.g.
•  “putting the stew in the oven”
•  “smells Reaaal goood Elsa!”
•  don’t confuse these “messages” with

MessageType’s

  This is programming!
•  with all the bugs and debugging
•  if a message not handled properly or ignored,

whole simulation can stall

IMGD 400X (B 08) 16

10/31/08

9

Hierarchical State Machines

  Why?

IMGD 400X (B 08) 18

search

goto
disposal

goto
 trash

see trash

trash disposed

have trash

10/31/08

10

Interruptions (e.g., Alarms)

IMGD 400X (B 08) 19

search

goto
disposal

goto
 trash

see trash

trash disposed

have trash

recharge

low power recharged

recharge

low power recharged

recharge

low power recharged

(search) (trash)

(disposal)

6 - doubled the number of states!

Add Another Interruption Type

IMGD 400X (B 08) 20

hide

battle all clear

(search/recharge)

hide

hide

hide

hide
hide

12 - doubled the number of states again!

10/31/08

11

Hierarchical State Machines

IMGD 400X (B 08) 21

search

goto
disposal

goto
 trash

see trash

trash disposed

have trash

clean

recharge
low power

recharged

•  leave any state in (composite) ‘clean’ state when ‘low power’

•  ‘clean’ remembers internal state and continues when returned to
via ‘recharged’’

IMGD 400X (B 08) 22

Add Another Interruption Type

search

goto
disposal

goto
 trash

see trash

trash disposed

have trash

clean

recharge
low power

recharged

hide
battle

all clear

7 states (including composite) vs. 12

battle all clear

hide
(recharge)

(clean)

10/31/08

12

IMGD 4000X (B 08) 23

Cross-Hierarchy Transitions

  Why?
•  suppose we want robot to top-off battery if it

doesn’t see any trash

search

goto
disposal

goto
 trash

see trash

trash disposed

have trash

clean
recharge

low power

recharged

IMGD 400X (B 08) 24

Cross-Hierarchy Transitions

search

goto
disposal

goto
 trash

see trash

trash disposed

have trash

clean

recharge
low power

recharged

less than 75% power

10/31/08

13

Hierarchical State Machines

  'Blip' states in Buckland implementation are simple
case (remembers single previous state)

  General case has full push-down stack

  See Millington Sec. 5.3.9 for more details

IMGD 400X (B 08) 25

search

goto
disposal

goto
 trash

see trash

trash disposed

have trash

clean

recharge
low power

recharged

Non-deterministic State Machines

IMGD 400X (B 08) 26

Start

Approach

Aim &
Jump &
Shoot

Aim &
Slide Left
& Shoot

Aim &
Slide Right

& Shoot .3
.3

.4

.3
.3

.4

•  multiple transitions for same event
•  label each with probability (Σ=1)
•  state machine randomly chooses at run time,

 based on probabilities
•  adds variety to actions

10/31/08

14

Non-deterministic State Machines

  Also known as "Markov Models"
  Similar effect achieved in miner's wife states using ad

hoc code rather than general machine

  See Millington, Sec. 5.5.2 for more details
  Similar variety effect can also be obtained with fuzzy

logic (Chapter 10)

IMGD 400X (B 08) 27

VisitBathroom DoHouseWork

.9

.1

Coming up...

  Homework #2 – Bar Fly (due Sunday
midnight)

•  adding another character/agent to West World

•  new states and messages

  Review Chapter 3 (steering)

  Start reading Chapter 4 to prepare for next
week (Simple Soccer)

IMGD 400X (B 08) 28

