Building a Better

Battle

The Halo 3 Al Objectives
System

| \ =5 / 3 i

Damian Isla
Bungie Studios

BUNGIE

Building A Better Battle

Designer tools
Al is an integral part of it

An interesting Next-Gen problem

BUNGIE

3/30/12

3/30/12

BUNGIE

“Big Battle” Technology

Flocking

Encounter logic
Effects

Scalable Al e _
Mission dialogue

BUNGIE

3/30/12

“Big Battle” Technology

Encounter logic

BUNGIE

3/30/12

Encounter Design

Encounters are systems
Lots of guys
Lots of things to do

The system reacts in
interesting ways

The system collapses in
interesting ways

An encounter is a complicated
dance with lots of dancers

How is this dance
choreographed?

BUNGIE

Choreography 101

* The dance is about the illusion of strategic intelligence

« Strategy is environment- story- and pacing-dependent

Designer provides X_ i S Al acts smart within
the strategic o : the confines of the
intelligence plan provided by
the designer

BUNGIE

3/30/12

The Canonical Encounter

Two-stage fallback & r“—
- Enemies occupy a territory JE

Pushed to “fallback” point &
Pushed to “last-stand” pointss. = &
Player “breaks” them -
Player finishes them off

=

.. plus a little “spice”
snipers
turrets
dropships

BUNGIE

Task

The mission designers’
language for telling
the Al what it should
be doing

Halo:
» Territory

+ Behavior
— aggressiveness
— rules of engagement
— player following

Changing task moves Al around the encounter space

BUNGIE

The Control Stack

Encounter

Mission-designers script
sequence of tasks

Mission designers

Al engineers, Al designers
Within the task, the

Al behaves autonomously

BUNGIE

The Control Stack

Encounter

Mission-designers script
sequence of tasks

VWithin the 126k, the
Al behaveeatt@nomously

BUNGIE

3/30/12

Halo 2: The Imperative Method

BUNGIE

The Imperative Method

Give the designers an FSM construction tool

< 25% alive®?

< 75% alive-?

BUNGIE

3/30/12

3/30/12

Problems with the Imperative
Method

BUNGIE

Problems with the Imperative
Method

Generator 3 Generator 2

Explicit transitions = n? complexity
BUNGIE

3/30/12

Problems with the Imperative
Method

For Halo 3:
Larger encounters
More characters
More open spaces
More avenues of attack

BUNGIE

Halo 3: The Declarative Method

BUNGIE

The Declarative Method

The new approach:

Enumerate “tasks that need doing” in the
environment

Let the system figure out who should
perform them

BUNGIE

The Declarative Method

Not without precedent

Similar to “affordances”
BUNGIE

3/30/12

10

The Declarative Method

Tasks have structure (j

* Relative priorities
— “The most important thing is

to guard the door, but if you
can, also guard the hallway”

* Are made up of sub-tasks

BUNGIE

“Guarding the hallway
means guarding the front,
the middle and the rear of
the hallway.”

Behavior Trees

(Handling Complexity in the
Halo 2 Al, GDC 2005)

Takeaways:

1. Perioritized-list decision
scheme

2. Behaviors are self-describing

BUNGIE

We are not making a single choice.
We are finding a distribution across all choices.

grenade
melee

shoot

uncover

pursue

3/30/12

11

3/30/12

Task Trees?

Generator 1

%

Generator 3 Generator 2

BUNGIE

forward

Task Trees?

fallback

8
0
0
8
0
0
8
0
0

forward

fallback

forward

fallback

BUNGIE

12

3/30/12

Halo 3 Al Objectives System

The structure:
e A Tree of Prioritized Tasks

» Tasks are self-describing
— priority
— activation script-fragments
— capacities

The Algorithm:
Pour squads in at the top

+ Allow them to filter down to the
most important tasks to be filling
RIGHT NOW

Basically, it’ s a plinko
BUNGiEhachine

The Dynamic Plinko Machine

* Tasks turn themselves on
and off

* Squads pulled UP, on
activation of a higher-
priority task

* Squads pushed DOWN,
on deactivation of the task
they’ re in

BUNGIE

13

3/30/12

3 Generators
Revisited

BUNGIE

Designer Ul

% Al Objectives

Neme |obj_sscovenant add | ¥ Render FiringPoints
Zone 2n_substation Delete
Task Conditions Filter Style Min Max Bodies Life MinStr #fps
W@ pharton [[¥ Johantom ~[Nomal ~[o o Jw[o Jw]o_ Jomo [3 | =
[infantiy_gate: I [Tnore ~ [Nomal ~[0_[0o [w[o [w[o_ [om o]
[@)]backjackaLgate | [¥ Jisckal ~ [Normal ~[o [0 Jw]o_Jo’/[o Jooo Jo |
[(0)[dock_gate [i<=a_ss_obi_contiol 4) [rone ~ [Nomal ~[0_ [0 [[F [0 Jooo o |
[(0) Tback_gate I [Jrone ~ [Nomal ~[0_Jo_Jo/o_Jo/joJooo o]
|l|1ux [b_cov_back [0=a_ss_obi_control 3] [Tleader = [[Nowmal ~[3 5 [v[o Jofo Jooo [3¢ |
[(0) [b_fort_01b [(and ot (volume_test_players tv_ss_07)) (<= g_ss_obi_control 7)) [Tleader ~ [Nomal ~[0 [5 Jw[¢ Jo/jo Jooo [0 |
|| I | [rone ~ [Nownal ~[0 o Jw]z Jofo Jooo [e1 |
[][@]b_cov_03 [[¥ Jleader ~[[Nomal ~[0 ¢ w5 [o/o Jooo [a4 |
|[©b_cov_o1 [<=a_ss_obi_control 7) [¥ Tleader = [[Nowmal | N N (7 N 2 O X
ﬂl[ﬂl [b_cov_02 [(<=a_ss_obi_cortrol 8] [¥ Jleader v [[Nomal ~[0 ¢ Jw]s Jo/jo Jooo [ed |
W[oree | [Torute = [[Nowmal ~[0 [z [z Jo/Jo Jooo [e4 |
[©)]b_grunt 01 [(<=a_ss_obi_cortrel 7) [Jgrunt v [[Nomal ~[0 [3 Jwo Jo/o Jooo [47 |
I|Tox [o_gunt 02 [<=a_ss_obi_control 8] [Tarunt ~[Nomal ~[0 3 [w[o [w[o_[oo0 [|
W (O Jwasback [[Jrone ~ [Nowmal | N CEN 22 N (O T T |

* Integration with HaloScript

* Run-time feedback

BUNGIE

14

3/30/12

The Algorithm

BUNGIE

The Algorithm

Consider a subtree fragment

Determine which children are active

— Squads in inactive tasks assigned back
up to parent

Consider top priority group

Collect squads to attempt to
distribute @ '
— Squads currently in parent \
— Squads in lower-priority tasks

Distribute Squads

Recurse for children in top priority-

group

Iterate to next “priority group”

BUNGIE

15

Squad Distribution

Formally, we have
» set S of n squads
» set T of m tasks

Now, find a mapping F: S = T

Two parts:
1. Respect Task-Capacity Constraints
2. Minimize cost function H(F)

BUNGIE

Squad Distribution

1. Respect Task-Capacity Constraints
guys assigned to task t < capacity(t)

... but remember, we’ re bucketing by squads.

This is called bin-packing. And it' s NP-Hard.

BUNGIE

3/30/12

16

3/30/12

Squad Distribution

1. Respect Task-Capacity Constraints

Fortunately

a) there’s always Wikipedia

b) we can live with sub-optimal

c) we’ re optimizing not for m, but for H(F)

BUNGIE

Squad Distribution

2. Minimize cost function H(F)

Why a cost function?

Gives us a basis for choosing
one distribution over another

@
Weigh different concerns R
don’t want to travel far
want to act coordinated
want to balance the tree
want to get near to the
player

BUNGIE

17

Squad Distribution

2. Minimize cost function H(F)

DANGER: Al can look really
stupid with wrong H(F)

OPPORTUNITY: Designer has
abdicated his decision-
making authority

BUNGIE

Squad Distribution

2. Minimize cost function H(F)

A class of local cost functions:

A

A

3/30/12

18

3/30/12

A Greedy Approach

while (S is not empty)

find pair (s, t) that give the minimum H(s, t)
for all S x T (where adding s to t would not
exceed t's capacity)

if (s, t)
assign(s, t)
capacity(t) = capacity(t) - size(s)
S =S - s
else
end

BUNGIE

A note on Performance

Our algorithm may be O(n°m), but we are
redeemed by the fact that n and m are small

Other performance improvements
» Cache H(s,t) results

» Timeslice entire trees < Halo3
» Timeslice nodes within trees

BUNGIE

19

M) /3 5
%/zﬁmﬁmi)

BUNGIE

Filters

Particular tasks only available to particular kinds of
guys

E.g.
— Must be of character type X
— Must be in vehicles
— Must NOT be in vehicles
— Snipers

“Filters”

» Specify occupation conditions (as opposed to activation
conditions)

« “Trivially” implemented as an inf return value from H(s, t)
 Helpful for the “spice”

BUNGIE

3/30/12

20

Further Task Refinements

Activation behavior
e Latch on
e Latch off / exhaustion

Exhaustion behavior
e Death count
 Living count

Assignment behavior
* One-time assignment

All of these were designer requests

BUNGIE

Case Studies

BUNGIE

3/30/12

21

3/30/12

Case Study #1:
Leadership

Want to have leaders and
followers
» Brute and three grunts

e Brute Chieftan and brute
pack

Gameplay

* Leaders provide structure to
encounter '

+ Leader death “breaks”
followers

BUNGIE

Case Study #1: Leadership

Two Parts:

1. Leadership-based filters
— Core task: “leader” filter
— Peripheral tasks: “NO leader” filter

2. Task “broken” state (leader dead)

— Task does not allow redistribution in or out while
broken

— NPCs have “broken” behaviors

BUNGIE

22

Case Study #2: Player pickup

Vehicle encounters are not fun without a vehicle

Gameplay
* When the player needs a vehicle, allies go pick him up

b

N

/==

Case Study #2: Player pickup

Implementation: one dedicated player-pickup task
per encounter (high priority)

Four parts:

1. vehicle filter

2. player_needs_vehicle() script function
3. “follow player” task option

4. driver player_pickup behavior

And that’ s it!

BUNGIE

3/30/12

23

3/30/12

BUNGIE

Summaries

BUNGIE

24

Badness Summary

Requires designer training

Sometimes awkward relationship between scripting
system and Objectives

Tying together allied and enemy “fronts” was
complicated.

The squad wasn’ t always the best level at which to
do the bucketing

— e.g. give a guy a sniper rifle ... shouldn’ t he then be
allowed to occupy a “sniper” task?

BUNGIE

Technique Summary

» Declarative approaches are great
— less direct control, more manageability

» Hierarchies are great
— more modular
— better scalability

+ Self-describing tasks makes this whole thing
O(n) complexity rather than O(n?) (conceptually)

BUNGIE

3/30/12

25

3/30/12

Production Summary

+ The Goal: provide a powerful tool for designers to control
strategy-level decision-making for a large group of
characters

Flexible enough to incorporate plenty of designer-
requested features / modifications

Great for Prototyping

— became much more complicated as we neared shippable
encounter state

» One-stop-shop for encounter construction

BUNGIE

Summary Summary

Not a problem isolated to Halo

As number of NPCs grows, these kinds of
techniques will become more and more
important

All you need ...
.. iIs H(s,1)

BUNGIE

26

