
Procedural Content
Generation

Lecture 1: Introduction
Autumn 2010

IT University of Copenhagen

Julian Togelius

Friday, September 3, 2010

What is PCG in games?

• Procedural Generation: with no or limited
human intervention, algorithmically

• of Content: not NPC behaviour, not the
game engine, things that affect gameplay

• in Games: computer games, board games...
any kind of games

Friday, September 3, 2010

Game content, e.g.

• Levels, tracks, maps, terrains, dungeons,
puzzles, buildings, trees, grass, fire, plots,
descriptions, scenarios, dialogue, quests,
characters, rules, boards, parameters,
camera viewpoint, dynamics, weapons,
clothing, vehicles, personalities...

Friday, September 3, 2010

History: Runtime random level
generation

• Rogue-2D

1980

History: Runtime random level
generation

• Tribal Trouble

2005

Civilization IV

Friday, September 3, 2010

2005

History: Runtime random level
generation

• Dwarf Fortress-3D

2007

Diablo

Friday, September 3, 2010

2008

Dejobaan Games
2010

SpeedTree

Friday, September 3, 2010

Sudoku

Friday, September 3, 2010

The future...
• Can we drastically cut game development

costs by creating content automatically
from designers’ intentions?

• Can we create games that adapt their game
worlds to the preferences of the player?

• Can we create endless games?

• Can the computer circumvent or augment
limited human creativity and create new
types of games?

Friday, September 3, 2010

PCG > randomness
In general,

Friday, September 24, 2010

A taxonomy of PCG

• Online/Offline

• Necessary/Optional

• Random seeds/Parameter vectors

• Stochastic/Deterministic

• Constructive/Generate-and-test

Friday, September 3, 2010

Online/Offline

• Online: as the game is being played

• Offline: during development of the game

Friday, September 3, 2010

Necessary/Optional

• Necessary content: content the player
needs to pass in order to progress

• Optional content: can be discarded, or
bypassed, or exchanged for something else

Friday, September 3, 2010

Stochastic/
Deterministic

• Deterministic: given the same starting
conditions, always creates the same content

• Stochastic: the above is not the case

Friday, September 3, 2010

Random seeds/
Parameter vectors

• a.k.a. dimensions of control

• Can we specify the shape of the content in
some meaningful way?

Friday, September 3, 2010

Constructive/
Generate-and-test

• Constructive: generate the content once
and be done with it

• Generate-and-test: generate, test for
quality, and re-generate until the content is
good enough

Friday, September 3, 2010

The Search-based
Paradigm

• A special case of generate-and-test:

• The test function returns a numeric
fitness value (not just accept/reject)

• The fitness value guides the generation of
new candidate content items

• Usually implemented through evolutionary
computation

Friday, September 3, 2010

Evolutionary
computation?

• Keep a population of candidates

• Measure the fitness of each candidate

• Remove the worst candidates

• Replace with copies of the best (least bad)
candidates

• Mutate/crossover the copies

Friday, September 17, 2010

Lecture 3:
Plants and L-systems
Procedural Content Generation, Autumn 2010

Julian Togelius

(some material borrowed from Gabriela Ochoa)

Friday, September 17, 2010

Plants?

• Core feature of the natural world...
therefore of many games

• Need for believability

• Infinitely detailed

• Similar and recognizable, but not identical

• Need for compact representation

• Need for automatic large-scale generation

Friday, September 17, 2010

SpeedTree

Friday, September 17, 2010

Self-similarity

Friday, September 17, 2010

Self-similarity

• Nature has obviously thought out some
clever way of representing complex
organisms using a compact description...

• ...permitting individual variation...

• ...why is this relevant for us?

Friday, September 17, 2010

L-systems

• Introduced by Aristid Lindenmeyer 1968, to
model plant development

• Creates strings (text) from an alphabet
based on a grammar and an axiom

• Closely related to Chomsky grammars (but
productions carried out in parallel, not
sequentially)

Friday, September 17, 2010

An example L-system

• Alphabet: {a, b}

• Production rules
(grammar):
a>ab
b>a

• Axiom: b

b
|
a
!

 a b
 " #
a b a
" # !

a b a a b
 _/ / " ! \

a b a a b a b a

Example of a derivation in a
DOL-System

Friday, September 17, 2010

Types of L-systems

• Context-free: production rules refer only
to an individual symbol

• Context-sensitive: productions can depend
on the symbol’s neighbours

• Deterministic: there is exactly one
production for each symbol

• Stochastic: several productions for a symbol

Friday, September 17, 2010

A graphical interpretation
of L-systems

• Invented/popularized by Prusinkiewicz 1986

• Core idea: interpret generated strings as
instructions for a turtle in turtle graphics

• Read the string from left to right, changing
the state of the turtle (x, y, heading)

Friday, September 17, 2010

Example
graphical L-system

• Alphabet: {F, f, +, -}

• F: move the turtle forward (drawing a line)

• f: move the turtle forward (don’t draw)

• +/-: turn right/left (by some angle)

Friday, September 17, 2010

Graphical L-system
• axiom: F+F+F+F

• grammar:
F>F+F-F-FF+F+F-F

• Turning angle: 90º

n=0

n=1

n=2

Friday, September 17, 2010

Bracketed L-systems

• Alphabet: {F, f, +, -, [,]}

• [: push the current state (x, y, heading of the
turtle) onto a pushdown stack

•]: pop the current state of the turtle and
move the turtle there without drawing

• Enables branching structures!

Friday, September 17, 2010

Bracketed L-systems
• Axiom: F

• Grammar: F>F[-F]F[+F][F]

• Turning angle: 30º

n=1..5

Friday, September 17, 2010

3D graphics

• Turtle graphics L-system interpretation can
be extended to 3D space:

• Represent state as x, y, z and pitch, roll, yaw

• +, -: turn (yaw) left/right

• &, ^: pitch down/up

• \, /: roll left/right (counterclockwise/
clockwise)

Friday, September 17, 2010

3D interpretation
of L-systems

Friday, September 17, 2010

3D interpretation
of bracketed L-systems

Friday, September 17, 2010

2D
L-systems

be found in [16]. D iscrete dynamical systems such as cellular automa ta [7]
can also be used as indirect representa tions of this type.

C el lular representations are an indirect representa tion tha t use a grammar
as the basis of their encoding. T he representa tion consists of a specifica tion
of strings of product ion rules in the grammar tha t , when applied, yield the
final structure. T hese representa tions were first applied to ar tificial neural
nets [8, 9] but have also been applied to finite sta te game-playing agents [3].
L indenmayer systems or (L-systems) [13] which were devised as computa tional
models of plants [17] are an older type of gramma tical indirect representa tion
tha t share many fea tures with cellular representa tions. L-systems have been
applied to targets as diverse as music [6], error correct ing codes [4], and the
morphology of vir tual crea tures [10]. In this chapter L-systems will be used
to evolve a diverse collect ion of vir tual landscapes. T his encoding of vir tual
landscapes uses a few hundred by tes of da ta to specify a collect ion of large,
complex vir tual images of the same landscape a t di erent resolutions.

Rules:

A

A

A A

B B

B

Axiom:

A

B

A
A B

B A

BA

Two Expansions:

A A

B

B

B

A A

A

A B

A

BBB

B

A

F ig. 1.1. T he ax iom and rules for a simple two-dimensional L-syst em, toget her wi t h
two ex pansion of t he ax iom.Friday, September 17, 2010

Terrain interpretation
of 2D L-systems

• Each group of four letters is interpreted as
instructions for lowering or raising the
corners of a square

• e.g. A=+0.5, B=-0.5

A B

B A

Friday, September 17, 2010

Terrain interpretation
of 2D L-systems

• In next iteration, the 2D L-system is
rewritten once, and each square is divided
into two

• “Doubling the resolution”

A B

B A

A B

B A
A B

B A

A B

B A
Friday, September 17, 2010

Evolving L-systems

• How can we combine L-systems with
evolutionary computation?

Friday, September 17, 2010

Evolving L-systems
• Evolving the axiom

• Evolving the grammar:

• change the shape of one or more
production rules, or

• add/remove/replace productions

• counter limits

• Evolving the interpretation:

• Evolve production probabilities

• Evolve other aspects (e.g. turning angles)
Friday, September 17, 2010

Fitness functions

• Phototropism

• Bilateral symmetry

• Proportion of branching points

Friday, September 17, 2010

Evolved L-systems

Branching
points

Symmetry

Phototropism +
Symmetry

Phototropism

All 3

Friday, September 17, 2010

Multiobjective Exploration
of the StarCraft Map Space

Julian Togelius, Mike Preuss,
Nicola Beume, Simon Wessing,

Johan Hagelbäck and Georgios N. Yannakakis

Friday, September 24, 2010

StarCraft

• Classic real-time
strategy game

• Korea’s unofficial
national sport

• Two or three player
competitive matches

• Three distinct races

Friday, September 24, 2010

Why generate maps?
• Give players an unlimited supply of new,

unpredictable maps

• Negates rote learning advantages

• Dynamically adapt the game to individual
players’ strengths...

• ...or to groups of players!

• Help designers generate more novel and
balanced maps

• Help them with the “boring stuff”

Friday, September 24, 2010

Traditional (constructive)
map generation

• Place features on maps according to some
heuristic

• e.g. fractals, growing islands, cellular
automata

• Hard or impossible to optimize for
gameplay properties

• Restrictions on possible content necessary
in order to ensure valid maps

Friday, September 24, 2010

Our approach:

• Direct/indirect map representations

• An ensemble of fitness functions

• Multiobjective evolution

Friday, September 24, 2010

Our approach
• Define desirable traits of RTS maps

• Operationalize these traits as fitness
functions

• Define a search space for maps

• Search for maps that satisfy the fitness
functions as well as possible, using
multiobjective evolution

• (visualize trade-offs as Pareto fronts)

Friday, September 24, 2010

Desirable traits
of an RTS map

• Playability

• Fairness

• Skill differentiation

• Interestingness

Friday, September 24, 2010

Playability
fitness functions

• Base space: minimum amount of space
around bases

• Base distance: minimum distance between
bases (via A*)

Friday, September 24, 2010

Fairness
fitness functions

• Distance from base to closest resource

• Resource ownership

• Resource safety

• Resource fairness
functions base their fitness calculations directly on the pheno-
type representation of the content. Such fitness functions are
obviously much easier to implement and faster to compute
than simulation-based functions, but it is hard to devise direct
fitness functions that accurately predict key aspects of player
experience (except when basing them on data-driven player
models built from extensive user studies [11]).

For this paper, we do not have the luxury of having
human players sit through countless hours to test the tens
of thousands of candidate maps the evolutionary algorithm
generates, nor any reliable and efficient way of testing maps
through algorithmic playthrough of the full game. However,
we can simulate one key aspect of RTS gameplay: moving
between two points along the fastest possible path. We use
the classical A* algorithm for this task, which returns the
number of cells along the shortest path (avoiding impassable
areas) – if not otherwise specified, “distance” means number
of cells on the shortest path found by A* in the rest of the
paper. We defined eight different fitness measures (mainly
based on distance) intended to reflect various desired game
characteristics. It was at the time of their formulation not
clear to which degree the various functions conflicted or
induced searchable fitness landscapes. The experiments in
this paper investigate the interplay of pairs of these functions.

The designed fitness functions are motivated by a number
of desirable characteristics of good StarCraft maps:

• Playability: It should be possible to engage in normal
gameplay: building up a base, attacking enemies etc.

• Fairness: All players should have similar possibility of
winning the game given the same skill level. Note that
this does not necessarily mean that starting positions
should be or look similar.

• Skill differentiation: Superior tactics should win more
often, so the map should allow use of different tactics.

• Interestingness: Maps should not all look the same, and
should not be bland (e.g. symmetrical or featureless).

Before calculating any of the below fitness measures, the
map is “sanity checked” by ensuring that every base and
all resources are accessible (there exists a path which is not
blocked by impassable areas) from every other base. Any
map not satisfying these criteria is assigned a fitness of 0
in all objectives, effectively discarding it. This test ensures
basic playability. All fitness functions are to be maximized
and are normalized to values in [0, 1].

The first two fitness functions relate mainly to the prop-
erties of the placement of players’ starting bases, and to the
impassable area around and between bases.

• fb0: Base space. For playability, some space for other
buildings is required next to the base. Out of the 5*5
cells surrounding a base, the base space is defined as the
fraction of these cells that are passable and reachable
within 5 steps (using A*) from the base. This fitness
value is the mean of the base space of all bases.

• fb1: Base distance. The measure makes sure that the
bases are not too easy to reach from each other so
that each player have the opportunity to develop their

(a) unsafe resources (b) safe resources

Fig. 1: Safe and unsafe resources. Bases are depicted by
pentagons, resources as circles. The lines mark shortest
possible paths for attackers/defenders.

base before clashing with the others. It contributes to
playability and skill differentiation as the game is more
difficult for all players when starting close to each other.
fb1 is the minimum distance between any two bases,
dividedby the sum of the map’s width and height.

The next four fitness functions relate to the placement of
resources, relative to each other and to bases; all of these
measures mainly contribute to fairness.

• fr1: Distance from base to closest resource. The dis-
tance from each base to its closest mineral and its closest
gas wells is calculated. fr1 is the quotient between the
minimal and maximal distance to the closest resource
for all bases.

• fr2: Resource ownership. Each base is associated with
its closest resource (done separately for minerals and
gas wells) and the base is considered as the owner
of that resource. In case a resource is the closest to
more than one base, the bases own only a fraction of it
each (assuming fair sharing). fr2 is the average fraction
players own of their closest resources, where a value of
1 means that all resource are clearly assigned.

• fr3: Resource safety. Another measure of how clearly
resources are assigned to a single player, fr3 mea-
sures the average deviation of path lengths between
one resource and all bases (see Fig. 1). So, for bases
b1, ..., bn and resources r1, ..., rm we calculate all path
lengths between resources and bases and group them by
resource type:

⇥j = 1, . . . ,m : Dj = {dist(rj , bi) | i = 1, . . . , n} .

fr3 = min{sGas, sMinerals}, where sGas and sMinerals are
simply the average standard deviations of the respective
sets Dj .

• fr4: Resource fairness. For each base, the shortest
distance to both types of resources is calculated. The
fitness is then calculated as 1 � (max � min), where
max and min are the maximum and minimum distances
between a base and its nearest resource.

The remaining two fitness functions deal with the character
of the paths of the map. These functions mainly contribute
to skill differentiation and interestingness.

Friday, September 24, 2010

Skill differentiation
fitness functions

(also contribute to interestingness)

• Choke points
(narrowest width of shortest path)

• Path overlapping

Friday, September 24, 2010

Dual map
representation

• Indirect representation: a vector of real
numbers in {0..1}

• Direct representation: a 64x64 grid
corresponding to a StarCraft map, including
impassable areas, bases, resource sites

• Genotype to phenotype mapping:
before fitness calculation

Friday, September 24, 2010

Genotype to
phenotype

• Two or three bases, five mineral sources
and five gas wells: (phi, theta) coordinates

• Rock formations represented indirectly
using “turtle graphics”. Each formation has:

• (x, y) starting position

• probability of turning left/right

• probability of gaps (“lifting the pen”)

Friday, September 24, 2010

(a) Map 1 (b) Map 2

Fig. 2: Example maps generated by optimization with different objective function combinations.

TABLE I: Average number of individuals in the last non-
dominated fronts for each function combination.

fr1 fr2 fr3 fr4 fp1 fp2

fb1 6.9 1.6 5.0 7.8 2.9 7.5
fr1 5.8 9.1 3.4 3.7 7.6
fr2 1.2 2.7 20.0 1.3
fr3 7.3 3.3 8.7
fr4 2.8 8.1
fp1 4.2

TABLE II: Average hypervolume values of the last non-
dominated fronts for each function combination.

fr1 fr2 fr3 fr4 fp1 fp2

fb1 0.675 0.724 0.394 0.673 0.644 0.075
fr1 1.000 0.452 0.993 0.895 0.107
fr2 0.504 0.993 0.900 0.114
fr3 0.473 0.479 0.053
fr4 0.891 0.108
fp1 0.099

barrier; see figure 2 for an example. fr2 and fr3 are both
attempts at measuring the same underlying quality, and
predictably there is almost no conflict between them; the
average Pareto front size is just over 1. All hypervolumes
involving fp2 (path overlapping) are very small, maybe due
to inadequate normalization. An improvement would be to
normalize with respect to free cells only rather than all cells.

C. Map Generation
Figure 2 depict two resulting from the simultaneous opti-

mization of fr4 and fp1. The map was generated using the

method described in section III. The large blue and red circles
mark the two bases. Minerals are indicated by light blue
diamonds, gas wells by a crater. The impassable areas are
drawn either as mountains (grey) or as water (dark blue). As
can be seen from the figure, the bases are situated close to the
map borders (probably due to the base placement method and
the fb1 constraints), the impassable areas are perforated with
small gaps (fp1) and the resources are very evenly distributed
(fr4).

D. Discussion

Our various fitness functions turned to differ greatly in how
easily they were to optimize and their potential for interesting
conflicts with other objectives. The base placement functions
fb1 and fb2, were so easy to optimize that they could be
converted to constraints.

The result of optimizing for the resource placement func-
tions looked very different upon visual inspection. We were
less than satisfied with functions fr1 and fr2; the latter
because it is too easy to optimize, and the former because
it results in maps that don’t look very StarCraft-like. fr4,
which considers all resources rather than just the closest ones,
renders much more palatable results. This suggest that a map
generator could use something like fr4 to generate the global
resource placement, and then simple place one resource of
each type within a single-screen line of sight from each base.
A similar measure that allows the difficulty of the resources
to be scaled would be interesting as well.

Optimizing the choke point function fp1 tends to generate
scattered and disconnected impassable areas, suggesting that
optimizing for low values of the same functions could gener-
ate areas of compact impassable areas and open spaces. This

Evolved map
Resource fairness vs. choke points

Friday, September 24, 2010

(a) Map 1 (b) Map 2

Fig. 2: Example maps generated by optimization with different objective function combinations.

TABLE I: Average number of individuals in the last non-
dominated fronts for each function combination.

fr1 fr2 fr3 fr4 fp1 fp2

fb1 6.9 1.6 5.0 7.8 2.9 7.5
fr1 5.8 9.1 3.4 3.7 7.6
fr2 1.2 2.7 20.0 1.3
fr3 7.3 3.3 8.7
fr4 2.8 8.1
fp1 4.2

TABLE II: Average hypervolume values of the last non-
dominated fronts for each function combination.

fr1 fr2 fr3 fr4 fp1 fp2

fb1 0.675 0.724 0.394 0.673 0.644 0.075
fr1 1.000 0.452 0.993 0.895 0.107
fr2 0.504 0.993 0.900 0.114
fr3 0.473 0.479 0.053
fr4 0.891 0.108
fp1 0.099

barrier; see figure 2 for an example. fr2 and fr3 are both
attempts at measuring the same underlying quality, and
predictably there is almost no conflict between them; the
average Pareto front size is just over 1. All hypervolumes
involving fp2 (path overlapping) are very small, maybe due
to inadequate normalization. An improvement would be to
normalize with respect to free cells only rather than all cells.

C. Map Generation
Figure 2 depict two resulting from the simultaneous opti-

mization of fr4 and fp1. The map was generated using the

method described in section III. The large blue and red circles
mark the two bases. Minerals are indicated by light blue
diamonds, gas wells by a crater. The impassable areas are
drawn either as mountains (grey) or as water (dark blue). As
can be seen from the figure, the bases are situated close to the
map borders (probably due to the base placement method and
the fb1 constraints), the impassable areas are perforated with
small gaps (fp1) and the resources are very evenly distributed
(fr4).

D. Discussion

Our various fitness functions turned to differ greatly in how
easily they were to optimize and their potential for interesting
conflicts with other objectives. The base placement functions
fb1 and fb2, were so easy to optimize that they could be
converted to constraints.

The result of optimizing for the resource placement func-
tions looked very different upon visual inspection. We were
less than satisfied with functions fr1 and fr2; the latter
because it is too easy to optimize, and the former because
it results in maps that don’t look very StarCraft-like. fr4,
which considers all resources rather than just the closest ones,
renders much more palatable results. This suggest that a map
generator could use something like fr4 to generate the global
resource placement, and then simple place one resource of
each type within a single-screen line of sight from each base.
A similar measure that allows the difficulty of the resources
to be scaled would be interesting as well.

Optimizing the choke point function fp1 tends to generate
scattered and disconnected impassable areas, suggesting that
optimizing for low values of the same functions could gener-
ate areas of compact impassable areas and open spaces. This

Another evolved map
Resource fairness vs. choke points

Friday, September 24, 2010

Three-player map
Friday, September 24, 2010

Another three-player map
Friday, September 24, 2010

Agent-based methods

• Use a number of “artificial agents” that
construct the landscape by acting on it

• Agents of different types do different jobs

• Could be more controllable than diamond-
square

• Could give rise to different types of
landscapes

Friday, September 24, 2010

Controlled Procedural
Terrain Generation

Using Software Agents
Jonathon Doran and Ian Parberry

Published in IEEE TCIAIG, 2010

Friday, September 24, 2010

D&P’s five agent types

• Coastline agents

• Smoothing agents

• Beach agents

• Mountain agents

• River agents

Friday, September 24, 2010

Rules for agents

• Each agent has a set number of “tokens” to
spend on actions

• Each agent is allowed to see the current
elevation around it, and allowed to modify
it

• Agents don’t interact directly

Friday, September 24, 2010

In the beginning...

...there was a vast ocean.

Then came the first coastline agent.

Friday, September 24, 2010

Coastline agents
• Multiply until they cover the whole coast -

about 1000 necessary for this size maps

• Move out to position themselves right at
the border of land and sea

• Generate a repulsor and an attractor point

• Score all neighbouring points according to
distance to repulsor and attractor points

• Move to the best-scoring points, adding
land as they go along

Friday, September 24, 2010

Figure 1: Coastlines produced by coastline agents with (left to right) small, medium and large
action sizes

Coastline-Generate(agent)
1 if tokens(agent) � limit
2 then
3 create 2 child agents
4 for each child
5 do
6 child ⇥ a random seed point on parent’s border
7 child ⇥ 1/2 of the parent’s tokens
8 child ⇥ a random direction
9 Coastline-Generate(child)

10 else
11 for each token
12 do
13 point ⇥ random border point
14 for each point p adjacent to point
15 do
16 score p
17 fill in the point with the highest score

3.2 Smoothing Agents

Smoothing agents make random walks around the map adjusting the height of an arbitrary point
p to be the average of points in an extended von Neumann neighborhood of p consisting of the
four orthogonal map points surrounding p on the elevation grid and the four points beyond these
(see Wolfram [29]). A weighted average height is calculated, with the center point given 3 times
the weight of the other points. Therefore nine points with a total weight of eleven are used. This
provides some inertia to prevent elevations from rapidly changing. We believe that the extended
neighborhood is responsible for the emergence of “interesting” curved features on the map. Use of
an 8-cell Moore neighborhood resulted in less “interesting” results.

Each smoothing agent returns to its point of origin periodically. This encourages smoothing

6

Friday, September 24, 2010

Coastline agents

Figure 1: Coastlines produced by coastline agents with (left to right) small, medium and large
action sizes

Coastline-Generate(agent)
1 if tokens(agent) � limit
2 then
3 create 2 child agents
4 for each child
5 do
6 child ⇥ a random seed point on parent’s border
7 child ⇥ 1/2 of the parent’s tokens
8 child ⇥ a random direction
9 Coastline-Generate(child)

10 else
11 for each token
12 do
13 point ⇥ random border point
14 for each point p adjacent to point
15 do
16 score p
17 fill in the point with the highest score

3.2 Smoothing Agents

Smoothing agents make random walks around the map adjusting the height of an arbitrary point
p to be the average of points in an extended von Neumann neighborhood of p consisting of the
four orthogonal map points surrounding p on the elevation grid and the four points beyond these
(see Wolfram [29]). A weighted average height is calculated, with the center point given 3 times
the weight of the other points. Therefore nine points with a total weight of eleven are used. This
provides some inertia to prevent elevations from rapidly changing. We believe that the extended
neighborhood is responsible for the emergence of “interesting” curved features on the map. Use of
an 8-cell Moore neighborhood resulted in less “interesting” results.

Each smoothing agent returns to its point of origin periodically. This encourages smoothing

6

Varying action sizes

Friday, September 24, 2010

Smoothing agents

• Take random walks on
the map

• Change the elevation of
each visited point to
(almost) the mean of its
extended von Neumann
neighbourhood

Friday, September 24, 2010

Smoothing agents
agents to operate in a local area, which is useful when certain features of the map need more
smoothing than others.

The only configurable parameter for smoothing agents is the number of times that the agent
will return to its start point. Setting this number to a large value causes the agent to spend most
of its time near the start point. This provides a great deal of smoothing for that area, rather than
less smoothing spread over a larger area in the case where the agent is allowed to wander further
away.

Smooth(starting-point)
1 location� starting-point
2 for each token
3 do
4 heightlocation � weighted average of neighborhood
5 location� random neighboring point

3.3 Beach Agents

Beach agents create flat sandy areas next to the main coastline after the coastline agents have
finished. Before they begin, points on the main coastline are identified using breadth-first search.
Beach agents then use these points to place themselves on the coastline. They then perform random
walks flattening areas of beach, following the shoreline. Beach agents adjust the height of the beach
to allow random fluctuations in elevation so the beach is not a uniform flat space. After moving
to a spot on the coastline, the agent will lower the nearby points and jump inland to perform a
random walk. This creates variable sized sandy areas that can extend a short distance from the
water. After the random walk is complete, the agent returns to the coastline and continues to walk
along the shore. If an agent becomes stuck (for example running into a mountain range) and is
unable to continue its walk, it moves to another randomly chosen point on the main coastline and
continues. Beach agents avoid high areas, so any mountains that are next to the ocean are left
alone.

One of the more important parameters for the beach agent is the altitude limit, above which
the agent abandons an area and moves elsewhere. When the altitude limit is low, the raised area
near the middle of the beach is allowed to remain. When the altitude limit is high, the agent is
able to continue its work in this area and flattens the mound.

Beach agents set the height of the beach to random values within a specified range specified by
the designer. When this range is narrow, flat beaches are created. When it is raised a bit we see
more bumps. The designer can also control the width of a beach by indicating how far inland the
beach agents should begin flattening, and how long their random walk should be. Figure 2 shows
the e�ects of varying the width of a beach.

7

Friday, September 24, 2010

Beach agents

• Select random position along the coast,
where coast is not too steep

• Flatten an area around this point (leaving
small variations)

• Move randomly a short direction away
from the coast, flattening the area

Friday, September 24, 2010

Beach agentsFigure 2: Beaches produced by beach agents with (left to right) small, medium, and large beach
width.

Beach-Generate(starting-point)
1 location⇥ starting-point
2 for each token
3 do
4 if heightlocation � limit
5 then
6 location⇥ random shoreline point
7 flatten area around location
8 smooth area around location
9 inland⇥ random point a short distance inland from location

10 for i⇥ 0 to size(walk)
11 do
12 flatten area around inland
13 smooth area around inland
14 inland⇥ random neighboring point
15 location⇥ random neighboring point of location

3.4 Mountain Agents

Mountain agents raise mountain ranges. Each starts at a random point on land and selects a
preferred direction of travel. As a mountain agent moves in this direction it raises an inverted V
shaped wedge of points with the center line becoming the ridge line. The agent will move along
this ridge and will periodically decide to change direction within a 90 degree cone from its original
direction. The e�ect is that the agent zig-zags but heads generally in the same direction. If an
agent runs into the ocean or the map edge, it changes direction to avoid this obstacle.

The width of the V-shaped wedge determines the general width of the mountains, and to a large
degree the slope of the mountain sides. The rate at which the slope drops in elevation is randomly
determined for each wedge (within a designer-specified range), which produces some interesting
features on the sides of the mountains. Mountain agents also periodically create foothills running
perpendicular to the mountain range axis. Smoothing is performed on the mountain after the
wedge is raised, blending the heights and leaving gentler transitions between nearby points.

Prior terrain generators have used other techniques for creating mountains, such as fault gen-
eration [10, 23], fractal midpoint displacement [24], and point deposition [2, 15, 25]. While we

8

Friday, September 24, 2010

Beach agents

Varying beach width

Figure 2: Beaches produced by beach agents with (left to right) small, medium, and large beach
width.

Beach-Generate(starting-point)
1 location⇥ starting-point
2 for each token
3 do
4 if heightlocation � limit
5 then
6 location⇥ random shoreline point
7 flatten area around location
8 smooth area around location
9 inland⇥ random point a short distance inland from location

10 for i⇥ 0 to size(walk)
11 do
12 flatten area around inland
13 smooth area around inland
14 inland⇥ random neighboring point
15 location⇥ random neighboring point of location

3.4 Mountain Agents

Mountain agents raise mountain ranges. Each starts at a random point on land and selects a
preferred direction of travel. As a mountain agent moves in this direction it raises an inverted V
shaped wedge of points with the center line becoming the ridge line. The agent will move along
this ridge and will periodically decide to change direction within a 90 degree cone from its original
direction. The e�ect is that the agent zig-zags but heads generally in the same direction. If an
agent runs into the ocean or the map edge, it changes direction to avoid this obstacle.

The width of the V-shaped wedge determines the general width of the mountains, and to a large
degree the slope of the mountain sides. The rate at which the slope drops in elevation is randomly
determined for each wedge (within a designer-specified range), which produces some interesting
features on the sides of the mountains. Mountain agents also periodically create foothills running
perpendicular to the mountain range axis. Smoothing is performed on the mountain after the
wedge is raised, blending the heights and leaving gentler transitions between nearby points.

Prior terrain generators have used other techniques for creating mountains, such as fault gen-
eration [10, 23], fractal midpoint displacement [24], and point deposition [2, 15, 25]. While we

8

Friday, September 24, 2010

Mountain agents
• Start at random positions and directions

• Move forward, continuously elevating a
wedge, creating a ridge

• Turn randomly without 45 degrees from
the initial course

• Periodically offshoot “foothills”
perpendicular to movement direction

Friday, September 24, 2010

Mountain agents
Figure 4: Hill agents produce hills, similar to the way mountain agents produce mountains.

Mountain-Generate(startingpoint)
1 location� starting-point
2 direction� random direction
3 for each token
4 do
5 elevate wedge perpendicular to direction
6 smooth area around location
7 location� next point in direction
8 every n-th token
9 do

10 direction� original-direction ± 45-degrees

3.5 Hill Agents

Hill agents are a special case of the mountain agent. As with a mountain agent, the designer
specifies the number of tokens assigned to each hill agent, indirectly determining the size of each
hill. Hill agents generally create very short mountain ranges with a lower altitude, and no foothills,
as seen in Figure 4. Hill agents may have their altitude range determined by specifying a maximum
altitude and a variance. Since hill agents are a special case of mountain agents, these parameters
work exactly as they do for mountain agents.

Hill-Generate(mountain)
1 location� random point at the base of mountain
2 direction� direction away from mountain centerline
3 for each token
4 do
5 heightlocation � weighted average of neighborhood
6 raise a wedge perpendicular to direction
7 location� next point in direction

10

Friday, September 24, 2010

Mountain agents

Narrow versus wide features

Figure 3: Mountains with narrower features (left), and with wider features (right).

make no explicit attempt to simulate faults, our mountain agent’s terrain elevation is similar, with
the major di�erence being that the mountain agent determines its path as it operates, avoiding
obstacles in its way, whereas fault simulators determine the fault’s position prior to modifying the
landscape.

The Mountain agent’s simplistic wedge raising produces acceptable results, mainly due to the
interaction of the smoothing agents that are making random walks over the terrain. Figure 3 shows
the e�ects of widening a mountain and increasing its foothill length.

Mountain agents are the most configurable of all agents, as they introduce most of the inter-
esting features on a landscape. Without them the heightmap would be mostly flat. The designer
determines the number of mountain agents that will run, and specifies how many tokens each
mountain agent will receive. A single mountain agent will randomly position itself on the map,
decide on direction, and begin elevating terrain. It stops when it runs out of tokens or is unable to
proceed due to some obstacle. Mountain agents attempt to turn to avoid obstacles, but this ability
is limited to ensure that agents do not randomly wander the map.

Mountain agents are given a maximum altitude, and vary the generated height within a specified
range below this height. Mountain agents may also be assigned a width and slope, which allows them
to either spread out, or to create tall narrow ranges. While mountain agents perform smoothing,
they also follow this up by adding noise to restore some of the character lost during smoothing.
This noise is specified by a probability of altering a point’s altitude, and a variance. When a point’s
altitude is modified during this roughening phase, a random value up to the variance parameter is
either added or subtracted from the point’s current altitude.

Mountain agents periodically generate foothills perpendicular to the range axis. The lengths
of these are randomly determined from a configurable range, as is the frequency at which these
foothills are created.

9

Friday, September 24, 2010

River agents

• Move from a random point on the coast
towards a random point on a mountain
ridge

• “Wiggle” along the path

• Stop when reaching too high altitudes

• Retrace the path down to the ocean,
deepening a wedge along the path

Friday, September 24, 2010

River agentsFigure 5: River agents generated a dry river bed (left), and three rivers that meet at the ocean
(right).

River-Generate()
1 coast� random point on coastline
2 mountain� random point at base of a mountain
3 point� coast
4 while point not at mountain
5 do
6 add point to path
7 point� next point closer to mountain
8 while point not at coast
9 do

10 flatten wedge perpendicular to downhill direction
11 smooth area around point
12 point� next point in path

4 Implementation and Evaluation

We have implemented a framework that executes runnable agents in a random order, and for a
random slice of time (within a window). We assume atomic locking exists at the vertex level. The
first phase of agents, those that produce the coastline, do not share this scheduling system, but
there is nothing in these agents which depend on other agents. The purpose of this framework is to
demonstrate the independence of agents. The simplistic behavior of these agents results in complex
interactions among agents, and that the terrain is an emergent result.

Our agent-based terrain generator lends itself to implementation in either a purely procedural
environment, or in a designer-centric environment. In the former a game could use our technique
to generate terrain on-the-fly, guided by agent settings provided by the publisher in advance or in
real time. In the latter environment in which the publisher requires more control over the content,
a designer could use our technique to generate terrains that are first screened and/or modified by
a human being before being distributed. Note that unmodified terrains lend themselves to easy

12

Friday, September 24, 2010

River agents

A dry river, and the outflow of three rivers

Figure 5: River agents generated a dry river bed (left), and three rivers that meet at the ocean
(right).

River-Generate()
1 coast� random point on coastline
2 mountain� random point at base of a mountain
3 point� coast
4 while point not at mountain
5 do
6 add point to path
7 point� next point closer to mountain
8 while point not at coast
9 do

10 flatten wedge perpendicular to downhill direction
11 smooth area around point
12 point� next point in path

4 Implementation and Evaluation

We have implemented a framework that executes runnable agents in a random order, and for a
random slice of time (within a window). We assume atomic locking exists at the vertex level. The
first phase of agents, those that produce the coastline, do not share this scheduling system, but
there is nothing in these agents which depend on other agents. The purpose of this framework is to
demonstrate the independence of agents. The simplistic behavior of these agents results in complex
interactions among agents, and that the terrain is an emergent result.

Our agent-based terrain generator lends itself to implementation in either a purely procedural
environment, or in a designer-centric environment. In the former a game could use our technique
to generate terrain on-the-fly, guided by agent settings provided by the publisher in advance or in
real time. In the latter environment in which the publisher requires more control over the content,
a designer could use our technique to generate terrains that are first screened and/or modified by
a human being before being distributed. Note that unmodified terrains lend themselves to easy

12

Friday, September 24, 2010

In what order?

• Doran and Parberry suggest

• Coastline

• Landform

• Erosion

• But the “Implementation” suggests random
order

Friday, September 24, 2010

Further questions

• Parameters... what parameters?

• What features of landscapes do we want to
be able to specify?

• How can the human and the algorithm
interact productively?

Friday, September 24, 2010

Lecture 6:
Rules and mechanics
Procedural Content Generation, Autumn 2010

Julian Togelius

Friday, October 8, 2010

Salen and Zimmermann
define games:

“A game is a system in
which players engage
in an artificial conflict,
defined by rules, that
results in a
quantifiable outcome”

Friday, October 8, 2010

Can we create game
rules automatically?

• If so, which types of rules?

• For which types of games?

• How would we represent them?

• How would we judge how good a set of
rules is?

• And why would we do this?

Friday, October 8, 2010

Challenges
• How to represent game mechanics

• Representation should be complete

• Most games should make sense (?)

• High locality (?)

• Human-readable/editable (?)

• How to search the space

• How to evaluate the games

Friday, October 8, 2010

Automatic generation
of recombination games

Cameron Browne

PhD Thesis, 2008
IEEE TCIAIG, 2010

Friday, October 8, 2010

“Combinatorial games”

• Finite: produce a well-defined outcome.

• Discrete: turn-based.

• Deterministic: chance plays no part.

• Perfect information: no hidden information.

• Two-player.

Friday, October 8, 2010

The Ludi Game
Description Language
• In practice limited to board games

• Ludeme: Fundamental units of independently
transferable game information (“game
meme”)

• (tiling square)

• (size 3 3)

Friday, October 8, 2010

Tic-Tac-Toe

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. ?. NO. ?, MMMM YYYY.

4

Equipment

Rules

Define Play Produce

Players

Direct

Outcomes

Fig. 3. The basic game model.

III. THE LUDI SYSTEM
Ludi is a system for playing, measuring and synthesising

games within the scope of its GDL (Fig. 2). The main
components of the system are:

• GDL: defines the scope of games.
• GGP: interprets games and coordinates play.
• Strategy module: informs move planning.
• Criticism module: measures game quality.
• Synthesis module: generates new games.

A. Ludi GDL
The Ludi GDL is a high level game description language

based on the ludemic understanding of games outlined in
Section II. It is structured to follow the basic means-play-ends
model of games, extended to include the relationship between
the game and its players (Fig. 3).

The Ludi GDL was devised with Kernighan and Pike’s
principles of good software design [14] in mind:

• simplicity,
• clarity,
• generality, and
• automation.

It is a higher level language than the Stanford GDL and

Zillions ZRF, and although concise and conducive to human
authoring and machine manipulation it lacks the universal
generality of the Stanford GDL in particular. However, its
hierarchical and well-defined nature makes it ideal for the
intended experiments, as it is much more likely that a
structured tree-based language will evolve sensible rule sets
than an unstructured logic-based one. The Ludi GDL proved
sufficiently rich for this intended purpose that its somewhat
limited scope was not an issue.

The following example conveys the essence of the language:

(game Tic-Tac-Toe
 (players White Black)
 (board

(tiling square i-nbors)
(size 3 3)

)
 (end (All win (in-a-row 3)))
)

Fig. 4. The Ludi user interface.

This game (Tic-Tac-Toe) is played between White and
Black on a 3x3 square grid with orthogonal and diagonal
adjacency, and is won by the player to make a line of three
pieces of their colour (if any). Unless otherwise stated, it is
assumed that players take turns placing a piece of their colour
on an empty board cell each move.

Ludi GDL definitions closely correspond to a game’s
ludemic description, which is how a human designer would
typically conceptualise the game. A more detailed description
of the language is given in Appendix I and further examples of
games defined in the GDL can be found in Appendix II.

B. Ludi GGP
The core of the Ludi system is its general game player, as

shown in Fig. 2. The Ludi GGP is implemented in C++ and
provides the following functionality:

• rules parser,
• game object,
• user interface, and
• play manager.

The rules parser loads and parses games defined in the Ludi
GDL. If a definition is valid according to the grammar, then
the corresponding ludeme tree is constructed and the single
game object initialised. The game object maintains a record of
the current board state and handles tasks such as the generation
of legal moves and testing for terminal conditions.

The user interface (Fig. 4) presents games uniformly and
anonymously so that quality judgments are made on the merits
of the games themselves rather than their visual attractiveness.
The interface provides a plain English translation of the
current rule set and a tutorial mode to help players understand
new games. In tutorial mode, legal placements are marked ‘+’
and legal destination cells for movable pieces are similarly
marked ‘+’ when those pieces are clicked on.

Friday, October 8, 2010

(size 3 3) vs (size 3 3 3)
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. ?. NO. ?, MMMM YYYY.

2

The term game shall henceforth refer to a two-player
combinatorial game throughout this paper. Such games are an
ideal test bed for the experiments as they are typically deep but
described by simple, well defined rule sets.

Note that this is not a work in combinatorial game theory
(CGT), which is concerned with the analysis of games with a
view to solving them or at least finding optimal strategies [3]
and developing artificial players able to challenge human
experts. Within the context of this study, the artificial player is
of little interest except as a means for providing self-play
simulations. While it must be of sufficient strength to provide
meaningful playouts, we are concerned primarily with the
quality of the game itself rather than the quality of the player.

B. Ludemes
Just as a meme is a unit of information that replicates from

one person to another [4], a ludeme is a game meme or unit of
game information. First coined by Borvo [5], this term
describes a fundamental unit of play often equivalent to a rule;
ludemes are the conceptual equivalent of a game’s components
– both material and non-material – and are notable for their
ability to pass from one game or game class to another [6].

Ludemes may be single units of information, such as the
following items that describe aspects of the game board shown
in Fig. 1(a):

(tiling square)

(size 3 3)

Conceptually related items may be encapsulated to form

higher level compound ludemes as follows:

(board

 (tiling square)
 (size 3 3)
)

Collecting rules into such compound ludemes is a

convenient way to describe games. For example, the essence
of Tic-Tac-Toe may be succinctly described as follows
(assuming a two-player combinatorial model):

(game Tic-Tac-Toe

 (board
 (tiling square)
 (size 3 3)

)
(win (in-a-row 3))

)

 The concept of an entire game as an item of information
may seem odd but it is valid; there exist many examples of
identical games being discovered, fully formed, at similar
times. The most famous case is the independent discovery of
Hex by mathematicians Piet Hein and John Nash in the 1940s

(a) (b)

Fig. 1. Games of: (a) Tic-Tac-Toe and (b) Tic-Tac-Toe (3D) won by White.

[7]. A more recent example is Chameleon, discovered by New
Zealand and USA designers within a week of each other in
2003. Such cases may be examples of “memetic convergence”
in action towards optimal designs.

C. Recombination Games
Given a game in its ludemic form, it is a simple matter to

manipulate its rules to create variants and new games. For Tic-

Tac-Toe, such modifications might include the board size:

(size 2 2)

or the target line length:

(win (in-a-row 2))

 However, a moment’s reflection will reveal that each of
these changes break the game, by making it unwinnable in the
first case and trivially winnable in the second.

Other manipulations might involve extending the board to
three dimensions, as shown in Fig. 1(b):

(size 3 3 3)

or inverting the end condition to give a misere version:

(lose (in-a-row 3))

These variants are both more interesting but still trivially

solvable, and are more notable for their novelty value than any
inherent value as games. There is much room for improvement
in this branch of the N-in-a-row family.

The difficulty of deriving an interesting game from Tic-Tac-
Toe does not just stem from the fact that it is itself flawed (it is
drawish if played correctly). There is the serious problem that
rule sets for combinatorial games tend to be highly optimised
and fragile; authors strive for the simplest rule sets that give
the deepest playing experience, and the slightest change will
generally break a game. As in most creative fields, it is easy to
generate artificial content but much more difficult to generate
artificial content of human expert quality.

Friday, October 8, 2010

The Ludi systemIEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. ?. NO. ?, MMMM YYYY.

3

Ludi System

Player
1

Player
2

Player
8

General Game Player

User Interface

Rules
Parser

Game
Object

Play
Manager

Strategy

Criticism

Synthesis

Game
Description
Language

Game (*.gdl)

New games
(*.gdl)

Aesthetic score

Policy

Fig. 2. Framework of the Ludi system.

Given that the rule sets of most existing games are highly
optimised – certainly the well known ones – it is unlikely that
such simple manipulations of a game’s degrees of freedom will
produce a better game in isolation. The designer would usually
have tested such obvious variants and discarded them as
inferior. Instead, a more promising approach is to recombine
the game’s rules with rules from other games and look for the
emergence [8] of interesting, new rule combinations not
previously considered. The idea that there pre-exist a
multitude of games in the form of optimal rule combinations
waiting to be discovered resonates strongly with the Platonist
view of mathematics [9]. The question then becomes how to
search this potentially huge design space effectively.

D. Game Distance
It can be useful to measure the distance between existing

games and a newly derived rule set, in order to determine
whether it constitutes a duplicate, variant, or completely new
game.

The distinction between a variant and a new game is subtle,
but may be achieved by representing both games as rule trees
(based on their ludemic descriptions introduced above) and
accumulating the total weighted difference between these two
trees. Differences between rule parameters are weighted lightly
whereas structural differences between the rules themselves
are weighted more heavily, in inverse proportion to their depth
of nesting; higher level rules generally have wider applicability
and are therefore generally more important. If the total
difference between the two rule sets exceeds a certain

threshold value then the two games are considered to be
distinct.

E. General Game Players
Given the possibility of creating a large number of rule sets,

it would be desirable to test them automatically through self-
play. General game players (GGPs) – software systems for
playing a range of games well rather than any one particular
game expertly – are ideal for this purpose.

GGPs were first proposed several decades ago [10] but have
recently enjoyed a resurgence of interest as researchers come
to realise their potential value to the gaming and broader AI
communities. This includes GGP competitions run over recent
years in conjunction with international AI conferences [11].

F. Game Description Languages
 Central to any GGP is the game description language (GDL)
that defines the scope of games understood by the system.
There is a delicate balance between defining a GDL that is
powerful and extensible enough to encompass a wide range of
known and not-yet-known games, yet also efficient, elegant
and comprehensible to human authors.
 The most widely used GDL is probably the commercially
available Zillions of Games ZRF rule language [12]. ZRF
authors define games in a Lisp-like syntax using predefined
keywords, and may programmatically create complex rule
structures through macros. More recently, the Stanford GDL
used for the AAAI GGP competitions [13] is a lower level
language that defines games using first order logic.

Friday, October 8, 2010

Evaluating a game

• Play the game (both player use same
algorithm, with optimized board evaluation)

• Measure various aesthetic criteria: aspects of
how the game is played, of the ruleset, and
of the outcomes

• Combine the scores into a fitness value
somehow

Friday, October 8, 2010

Aesthetic criteria

• 16 Intrinsic: based on rules and equipment

• 11 Viability: based on game outcomes

• e.g. completion, duration

• 30 Quality: based on trends in play

• e.g. drama, uncertainty

Friday, October 8, 2010

Friday, October 8, 2010

Yavalath
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. ?. NO. ?, MMMM YYYY.

15

Support Ludeme
Specifies additional metadata for the game (optional).

 support ! {
 [advisors]
 [description]
 [aim]
 [ancestry]
 [ranking]
 [viable]
 [score]
 }

These items fulfill the following roles:

• advisors: Defines the policy for the game as a

list of relevant advisors and their
relative weightings.

• description: Includes a text description of the game
for help manual purposes.

• aim: Includes a text description of the aim
of the game, which, together with the
GGP’s tutorial mode, should help new
players learn the game quickly.

• ancestry: Contains information on the game’s
evolutionary history including its
immediate parents, generation number,
and average distances from its parents,
members of the initial population and
members of the final population.

• ranking: Contains an estimated ranking of the
game within its population.

• viable: Contains the estimated viability of the
game according to the viability test
described in Section V.

• score: Specifies the game’s estimated
aesthetic score as measured by the
process described in Section IV.

APPENDIX II
GDL DESCRIPTIONS OF SYNTHESISED GAMES

NDENGROD (#1)
(game Ndengrod

(players White Black)
(board (tiling hex) (shape trapezium) (size 7 7))
(pieces

(Piece All
(moves

(move
(pre (empty to))
(action (push))
(post (capture surround))

)
)

)
)
(end (All win (in-a-row 5)))

)

YAVALATH (#2)
(game Yavalath

(players White Black)
(board (tiling hex) (shape hex) (size 5))
(end
 (All win (in-a-row 4))

(All lose (and (in-a-row 3) (not (in-a-row 4))))
)

)

TEIGLITH (#4)
(game Teiglith

(players White Black)
(board (tiling square) (size 7 7))
(pieces

(Stone All
(moves

(move
(pre

(and
(> (group-size to) (phase to))
(connected)

)
)
(action (pop) (push))

)
)

)
)
(start (place (Stone White) home))
(end (All win (no-move)))

)

ELROSTIR (#5)
(game Elrostir

(players White Black)
(board (tiling square i-nbors) (size 5 5))
(end (All lose (or (no-move) (in-a-row 3))))

)

GORODRUI (#7)
(game Gorodrui

(players White Black)
(board (tiling hex) (shape hex) (size 3))
(pieces

(Stone All (state 1)
(moves

(move (pre (empty to)) (action (push)))
(move

(pre
(and

(enemy from) (empty to)
(= (+ (piece-state) 1) (distance))

)
)
(action (pop) (push))
(post (inc-state))

)
)

)
)
(start (in-hand (Stone All) 5))
(end (All lose (no-move)))

)

VALION (#16)
(game Valion

(players White Black)
(board (tiling square i-nbors) (size 4 4))
(pieces

 (Stone All
(moves

Friday, October 8, 2010

YavalathIEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. ?. NO. ?, MMMM YYYY.

11

Fig. 11. Predicted score versus player ranking of synthesised games.

These results support hypothesis I: That there exist

fundamental (and measurable) indicators of game quality, at
least for this group of subjects and this set of combinatorial
games.

C. Experiment III: Game Synthesis
Experiment III was designed to test whether new, viable

games may be evolved from existing games, and whether
aesthetic measurements may be used to reliably rank them.

Method

Using the database of 79 sample games from Experiment I
as the initial population, a number of evolutionary runs were
conducted on three Windows desktop machines over one
week. The coefficients of the best 16 predictors were used to
predict aesthetic scores for new games, which were then
ranked and a follow-up survey, similar in format to that of
Experiment I, conducted to evaluate these predicted rankings.

Subjects

27 subjects participated in the follow-up survey, recruited
mostly from the 57 participants of Experiment I.

Results

A total of 1,389 new games were evolved from the initial
population of 79 sample games and 19 deemed viable. A
selection is listed in Appendix II; see [15] for complete
descriptions and analyses of the evolved games.

127 paired comparisons were received for the 19 viable
games, and human player rankings were induced as per
Experiment I with a classification rate of 0.8283.

Figure 11 shows a plot of the predicted aesthetic scores
versus actual player rankings of the new games, with a
correlation of -0.6491 and 95% confidence interval of 0.577 [-
0.851 to -0.274]. The relationship is negative as higher scores
generally correspond to lower (i.e. better) rankings, as
expected. This indicates a significant linear trend between the
aesthetic measurements made by the system and player
rankings for the 19 new games.

x

x

Fig. 12. Yavalath puzzle: White to play and force a win.

These results support hypothesis II: That these fundamental

indicators may be harnessed for the directed search for new
high quality games, at least in the search for new
combinatorial games that this group of subjects find
interesting.

VII. DISCUSSION
The first thing to note is the general success of the approach;

the system was able to correlate aesthetic measurements of
games with human player rankings and hence identify those
evolved games of most interest. Several of the final 19 games
exhibit novel and interesting rule combinations, and those
ranked #1 and #2 by human players – Ndengrod and Yavalath
– have proven to be of exceptional quality and are now
commercially published [41].

Ndengrod combines Go-like surround capture with a 5-in-a-
row goal. This combination works well, but is a rediscovery of
an existing game (Irensei) translated to the hexagonal grid.

Yavalath, however, features an innovative rule that has not
previously been published: win by making 4-in-a-row but lose
by making 3-in-a-row before doing so. Bearing in mind the
assertion that good games should yield interesting puzzles
[20], Fig. 12 shows a Yavalath puzzle that demonstrates its
depth. Hint: Black can force a win with either move ‘x’, so
White must make a counter forcing move to avoid this.

Analysis of Yavalath’s ancestry reveals that this innovative
winning condition came about from the serendipitous mating
of rules that were impossible in isolation. If such flawed rules
had been optimised out during the evolutionary process then
Yavalath would probably never have emerged.

Teiglith (#4), Elrostir (#5), Gorodrui (#7) and Valion (#16)
demonstrate the approach’s usefulness even with games of
average or below average appeal. While not overly successful
as games, each involve interesting rule mechanisms that game
authors might use as inspiration for future designs. See
Appendix II for GDL descriptions of the games mentioned in
this section.

Friday, October 8, 2010

Combining human and
computer creativity
Procedural Content Generation, Autumn 2010

Julian Togelius

Friday, October 29, 2010

Who creates
a game’s content?

• The designer(s)/developer(s)?

• A computer-implemented algorithm?

• The players?

Friday, October 29, 2010

PCG and authorship

• How can we combine a human designer’s
authorial control and expressive ability with
PCG capabilities?

• Dimensions of control

• Ease of use

• Multi-level editing / two-way flow of
control

Friday, October 29, 2010

Integrating procedural
generation and manual
editing of virtual worlds

Ruben Smelik, Tim Tutenel,
Klaas Jan de Kraker and Rafael Bidarra

FDG Workshop on PCG, 2010

Friday, October 29, 2010

Sketchaworld framework

Goals:

• Increase designers’ productivity while
retaining creative control

• Provide intuitive way of working with PCG
algorithms for non-experts

• Provide framework in which to integrate
new PCG research

Friday, October 29, 2010

Declarative modelling

• Designers state their intent (what they
want) instead of method (how to get it)

• Procedural sketching: “paint” with PCG
tools

• Consistency maintenance through a GIS-
inspired system of layers

Friday, October 29, 2010

Declarative modelling

layered virtual world

Urban layer

Road layer

Vegetation layer

Water layer

Earth layer

procedural
generation

consistency
maintenance

generated terrain feature(s)

modifications to features

affected features

relevant nearby features

generated
terrain

feature(s)

sketched
features

updateuser control

manual refining

procedural sketching

la
nd

sc
ap

e
m

od
e feature m

ode

manual
edits

3D virtual worldupdate

Figure 1: An overview of the workflow of the declarative modeling framework SketchaWorld.

2.1 Procedural sketching
Procedural sketching provides an intuitive and fast way

of specifying complete virtual worlds (Figure 1 left hand).
Using simple and clear editing tools, designers create a 2D
digital sketch: a rough layout of the virtual world. Procedural
sketching provides two interaction modes:

Landscape mode Designers paint a top view of the land-
scape by coloring a grid with ecotopes (an area of
homogeneous terrain and features). These ecotopes en-
compass both elevation information (elevation ranges,
terrain roughness) and soil material information (sand,
grass, rock, etc.). The grid size is adjustable and the
brushes used are very similar to typical brushes found
in image editing software, including draw, fill, lasso,
magic wand and transition pattern brushes (e.g. from
ocean to shore).

Feature mode Designers place elements like rivers, roads,
and cities on the landscape using vector lines and poly-
gon tools. This resembles the basic tools found in
vector drawing software: placing and modifying lines
and polygons is done by manipulating control points.

As shown in Figure 1, each sketched element is automati-
cally expanded to a corresponding realistic terrain feature
using a customized procedure, and taking into account any
relevant surrounding features. As the design of a virtual
world is very much a creative process, the framework pro-
vides an iterative workflow, with support for unlimited undo
and redo, and a short feedback loop between edit action and
result. Its implementation details are explained in [19].

2.2 Consistency maintenance of the
virtual world model

All generated terrain features are grouped in five logical
layers, inspired from Geographic Information Systems (gis)
(see Figure 1 middle). Using di�erent layers improves the
adaptability of the virtual world model, because changes to
one layer do not necessarily have to a�ect other layers.

Terrain features need to blend in with their surroundings
to form a lifelike virtual world. If these features were to be
generated separately from their context in the virtual world,
designers would have to perform their integration manually,

which would harm their productivity and limit their ability
to experiment. Because the layered virtual world model is
semantically rich, it can be automatically kept in a valid
state using a form of consistency maintenance.

The introduction of a new terrain feature into the layered
virtual world model discerns two phases, one phase in which
the feature is generated and another phase in which the
feature is fit in the virtual world (shown in Figure 1). In the
first phase, the feature’s path, shape or other properties are
determined based on the provided user parameters and on
relevant nearby existing terrain features. In the second phase,
some of the surrounding features are a�ected by the newly
introduced feature and are therefore connected to it, modified
in some way or even removed. The consistency maintenance
in these two phases is based on rules describing the mutual
influence of terrain features. They include priorities to
determine, for instance, which type of features has precedence
when features overlap.

Although these maintenance phases somewhat increase the
execution time of individual operations, this continuously
keeps the virtual world model in a consistent and usable state
and it allows the designer to quickly see possible local side-
e�ects of edit actions. Each time a terrain feature is modified,
changes to related features are performed automatically as
logical side-e�ects of this change. In traditional modeling
systems, any large scale change to a virtual world typically
involves so much manual e�ort and editing steps, that a
designer will do anything to avoid it. With our approach,
designers are free to experiment with di�erent alternatives,
as the consistency and the integration is automatically taken
care of. Details of the implementation of consistency mainte-
nance are presented in [20].

2.3 Results
As an impression of how one can use procedural sketching

to design a virtual world, we present the intermediate results
of a short example sketch session (see Figure 2), in which a
designer creates, in a couple of minutes, a natural landscape
with a river flowing through a valley and a city on a hill along
this river. Figure 2.a shows the basic landscape, sketched
in landscape mode brushing the ecotope grid: a green valley
encompassed by mountains, with some forests defined in the
valley and a river flowing through it (see also Figure 2.d).
On top of this natural environment, in feature mode, some

Friday, October 29, 2010

(a) (b) (c)

(d) (e) (f)

Figure 2: Results of an example procedural sketching session: a) sketch of a natural environment b) road
sketched through the valley from east to south, crossing the river c) city outlined on a hill d) resulting natural
landscape e) river crossing with bridge f) resulting city on the hills.

man-made features are added. Firstly, the designer coarsely
outlines the desired path of a major road Figure 2.b. This
road crosses the river at one point, Figure 2.e shows the
bridge that was automatically created. Lastly, the designers
outlines a small village along this road (Figure 2.c), at the
hillside (Figure 2.e).

3. MANUAL EDITING OPERATIONS
To examine how one could integrate procedural methods

with manual edit operations, we start by identifying what
kind of manual operations one could desire and what are the
characteristics of these di�erent types of operations. For this,
we discern four levels of granularity in modeling operations
for creating virtual worlds:

Coarse level At this level, designers are concerned with the
rough layout of the virtual world and specify large scale
terrain features such as mountain ranges, rivers and
cities. For modeling at this level, procedural techniques
are most helpful, as they provide a quick way to fill the
world with terrain features.

Medium level This level concerns relatively large refine-
ments to features specified at a coarse level, for instance
creating a park within a city feature or changing one
of its districts from a residential to a commercial type
of district. Although editing entails refining coarse
features, these changes typically involve a substantial
amount of work, and are therefore very suitable for
procedural generation.

Fine level The fine level deals with modifying individual
objects (e.g. a single building or tree). These objects
typically result from a procedurally generated terrain
feature, but a designer could manually place new ob-
jects as well. Edit actions on this level involve little
procedural generation.

Micro level On the lowest level, designers manipulate geo-
metric meshes, assign textures to 3D models, etc.

Typically, procedural systems only support the coarse level,
and sometimes generate only one specific terrain feature.
Manual modeling systems often operate mainly on the micro
level. Both extremes have clear limitations and they cannot
be easily integrated because of the lack of editing facilities
that operate on the medium or fine level: generating a coarse
layout with a procedural system and then refining this model
using a manual system, operating on the micro level, will
typically involve much modeling e�ort.
Therefore, there is a need for a modeling approach that

properly integrates procedural generation with medium- and
fine-level manual edit operations. The kind of manual opera-
tions we consider can be placed in several categories:

1. changing the location of a generated object;
2. locally transforming a generated feature’s shape or

changing its internal structure;
3. modifying parameters for a specific region in a feature;
4. introducing new objects and features as part of gener-

ated features;
5. applying user-defined constraints on a feature;

Friday, October 29, 2010

Manual editing
• Coarse level: mountain ranges, rivers, cities.

Heavily dependent on procedural
generation.

• Medium level: city districts, parks, roads.
Procedural generation useful.

• Fine level: individual objects (houses, trees).
Little or no procedural generation.

• Micro level: meshes, textures

Friday, October 29, 2010

Open issues

• Preserving manual changes

• Balance control and consistency

• Iterative modeling workflow and edit
history (recreate previous actions?)

Friday, October 29, 2010

the death of level designer

seriously ?

Runtime random level generation

• What is missing?
– Creating fully 3D world spaces, including

bridges, archways, towers,..

Design of Level Content

• PCG is used as a mechanism for
minimizing the cost of content creation.

• Only? Any other reasons?

Dynamic World Generation

• Used when in-game map exceeds the
ability of the computer to store it.

• Use a constant seed number.
• Impossible to implement roads and rivers

– Why not?

Procedural Puzzle and Plot-
generation

• Prevents the user from getting the
information off from a game FAQ

• Gives infinite number of ways of solving a
puzzle

• Non-linear sandbox design

Where PCG will move?

• The real strength of PCG will be seen in
procedural generation of plot and narrative
content

• The greatest challenge of PCG will be to
augment or replace human intelligence in
the creation of meaningful narrative

• The one area that random map generation
is missing is complex 3D topology
generation

Where PCG will move?

• Traditional level design will adopt more
PCG functions

• Games that do PCG will do much better in
the marketplace

• PCG will continue to eat away at the
bottom end

• Middleware developers will get on board
with PCG

