
4/15/11	

1	

Networked Game
Development

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Who am I?

• Jeff Kesselman, CTO Nphos

> 18years in games and multi-media

> American Interactive Media (Phillips)
> Crystal Dynamics
> Total Entertainment Network (TEN)

> 9 years at Sun
> Win32 Java 1.3 Performance Tuning
> Initial leader of the JInput project
> 2 yrs in Sun “Game Technologies Group”
> 2.5 years at Sun Labs (Project Darkstar)

> CTO Rebel Monkey, Blue Fang Games

4/15/11	

2	

Goals for the Week

• The fundamental structure and technologies of
the internet
• The history of multi-player games and the
challenges they faced when moving to the
internet.
• The influx of web technologies and the rise of so
called “casual games.”

The Fundamental Technologies of
the Internet

4/15/11	

3	

A Packet
• Fundamental IO Unit

– Header
• Generally an op-code
• Might have other info

– Sender
– Packet size
– etc

– Payload
• The data being sent
• 0 or more fields

– 0 if no data needed

A set of related packets
and their meanings
together define a Protocol

Nesting Packets
• Entire packet can be the
“payload” of a bigger packet

– Outer packet header
prepended to inner packet

• Protocols “stack’ in this
manner

– Can be many layers deep

4/15/11	

4	

The TCP/IP Stack

Simplified Image of the Internet
• Internet is fundamentally
made of two things

• Client computers
• Routers

• Data “hops” from one
router to the next until it
reaches its destination

• Multiple potential routes
• Routed by IP address
• Can watch

• Traceroute in Unix
• Tracert in Windows

4/15/11	

5	

Packet Loss

•  Internet is inherently unreliable
•  Packets can be lost in transmission

Why might a packet be lost?

Packet Loss

•  Internet is inherently unreliable
•  Packets can be lost in transmission

•  Router failure
•  Line failure
•  Line partial failure (garbled data)
•  Router over-loaded (dropped from queue)

4/15/11	

6	

Packet Order

•  Internet is inherently unordered
•  Packets can arrive at destination in a different order

then they were sent

Why might they arrive out of order?

Packet Order

•  Recall Internet has redundant paths
•  Each packet traces its own path

•  Each router makes a packet by packet selection of where
to forward to based on current congestion

•  Decision is based on local knowledge only
•  Older packet might get “stuck” on a router queue

4/15/11	

7	

TCP and UDP
•  TCP and UDP are the fundamental data
“carriers” for applications on the Internet

•  UDP is
•  A datagram protocol

•  Connectionless, Packet Oriented
•  Unordered and Unreliable

•  Built more or less right on top of IP

•  TCP
•  A stream protocol

•  Connections, stream oriented
•  Ordered and Reliable

•  Complex additional protocol layer

TCP Reliability

•  Internet is inherently unreliable
•  Routers drop packets when garbled or overloaded
•  Packets can arrive in any order

•  Where does TCP get its guarantees?
•  Packets are sequence ordered on send.
•  If a later packet arrives before an earlier one, a

resend is requested
•  Delivery of later packets held until earlier packets

arrive
•  This is an over-simplification

•  30 yrs worth of tuning and refining behind TCP

4/15/11	

8	

Disadvantages of TCP

•  TCP is easy to use
•  Reliable and ordered
•  Easier to secure

 What might be some disadvantages of TCP?

Disadvantages of TCP

•  Can “stall”
•  Must wait for lost packet to continue
•  Creates latency spike

•  Small additional overhead per packet
•  About 28 bytes

•  For applications that are more sensitive to
latency then loss, UDP can be a better choice.

4/15/11	

9	

Application Level Protocols

•  All built on top of TCP or UDP
•  HTTP (the web)

•  Built on top of……. ?
•  RTP (streaming audio and video)

•  Built on top of… ?
•  SSH

•  Built on top of… ?
•  Guild Wars

•  Built on top of… ?
•  Unreal Networking

•  Built on top of… ?

Application Level Protocols

•  All built on top of TCP or UDP
•  HTTP (the web)

•  Built on top of TCP
•  RTP (streaming audio and video)

•  Built on top of UDP
•  SSH

•  Built on top of TCP
•  Guild Wars

•  Built on top of TCP
•  Unreal Networking

•  Built on top of UDP

4/15/11	

10	

Hybrids rare but possible

•  TEN’s BULLET Protocol
•  TEN was fundamentally a TCP/IP service
•  BULLET traded bandwidth for latency spike

reduction
•  Main stream of game traffic TCP/IP
•  Sliding window of packets duplicated in UDP side-channel
•  UDP packets used to “fill in” during TCP stalls if available

HTTP

•  Built on top of TCP/IP
•  Every Put/Get involves…

•  Make TCP/IP connection
•  Send request (character coded)
•  Get repsonse (character coded)
•  Close connection

•  Very Inefficient
•  Connection establishment expensive
•  Textual translation costs

•  Asynchronous by nature

4/15/11	

11	

HTTP Synchronous Sessions

•  Comet
•  AJAX technique to fake session
•  Polling based

•  “Long poll” to reduce costs
•  Really quite absurd

•  Even more inefficeint then HTML
•  Lots of problems

•  Faking connectivity that HTML threw away

HTTP Synchronous Sessions

•  HTML 5 Web Sockets
•  Real session

•  Multiple interactions on a single connection
•  Still Textual

4/15/11	

12	

RPC (Remote Procedure Call)
• Another layer (usually) over TCP/IP
• Computer A sends a packet to Computer B saying “call this
function”.

• Synchronous RPC, computer A waits for return value in a packet
from computer B, which it returns from the initiating call onA
• Asynchronous RPC, computer A sends the request and goes on. B
can initiate its own RPC call if it wishes to tlak back to A.

• Structural procedure call
• ONC RPC a standard (Unix, Windows, etc)

• Object Oriented RPC
• Java RMI
• Corba
• SOAP XML-RPC
• others.... (python, ruby, etc...)

Network Names

•  IP uses numerical addresses
•  IP4

•  4 bytes per address
•  128.132.45.1

•  IP6
•  8 octets per address
•  2001:0db8:85a3:08d3:1319:8a2e:0370:7334

How does www.google.com become 66.249.91.104?

4/15/11	

13	

Domain Name System (DNS)

•  Every destination on the internet is served by a
DNS registration server
•  Keeps a map of names to IP addresses

•  DNS servers tell other DNS servers about the
names registered with them
•  Loose, redundant network

•  Every DNS server has at least two other servers that it
trades information with

•  Very reliable
•  Takes time to propagate

Recall: Every computer has an IP
Address

•  IP address is like a street address
•  Routes packet through the internet
•  Packet eventually reaches router to which computer

is connected
•  Ip address is bound to that router, like your street

name is bound to your street

How does mobile internet work?

4/15/11	

14	

Dynamic Host Configuration
Protocol

•  DHCP is a “conversation” between router and
computer when computer first connects

•  IP from a free pool is assigned to computer
•  Computer generally keeps that Ip until

disconnected
•  Might keep it longer on a “lease” arrangement

•  Not just mobile computers
•  Often used by ISPs to remotely configure IP of

clients

DHCP and Security

Why might DHCP make game security harder?

4/15/11	

15	

DHCP and Security

•  IP is your “return address”
•  Every packet from you contains your IP so the other

computer (“host”) can return information to you

•  When net was new and hardwired, IP blocking
was a common solution to bad behavior

•  DHCP makes it very easy to “move” and thus
avoid recognition
•  Makes “IP Blocking” very difficult on modern net

•  Have to block entire sections of an ISPs address space
•  Lots of innocents are caught in such a block

Questions?

Tomorrow…. The history of multi-player gaming

4/15/11	

16	

Unit One:

History of Multi-player

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

The Evolutionary History of the Architecture of
Online Games

4/15/11	

17	

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Where game architecture comes from

• Game software has DNA
> It carries the history of the industry within it
> In order to understand current games, you need to

understand the history

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Where game architecture comes from

• Game software has DNA
> It carries the history of the industry within it
> In order to understand current games, you need to

understand the history
• Game software usually evolves incrementally

> Game development is generally risk adverse
> Game development is on tight schedules
> Games general vary only in minor way from what

came before

4/15/11	

18	

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Where game architecture comes from

• Game software has DNA
> It carries the history of the industry within it
> In order to understand current games, you need to

understand the history
• Game software usually evolves incrementally

> Game development is generally risk adverse
> Game development is on tight schedules
> Games general vary only in minor way from what

came before
• Leaps happen rarely but occasionally

> Usually by 'cross-breeding' unrelated software

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Multi-player games

An evolutionary line

4/15/11	

19	

The Game Loop

• “Near real time” programming
• Game runs in a tight loop

• input
• update
• calculate
• display
• do it all over again.....

• True for almost all games
• Turn based - wait on input
• “Real time” - poll input and continue

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Multi-Player, the first step

• Multiple Players on
one computer

• Turn Based
> Players each enter

their own move
sequentially in Update

• Real Time
> Each player has their

own set of keys or
input device

> All players are polled
in Update

I n
 p u

 t

Single Computer

I n
 p u

 t

4/15/11	

20	

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Multi-Station, the first networked games

• Played on LANs
• Non-local players are

on virtual devices
> Other players input

happens on foreign
machines

> Is communicated over
network

> Is processed in
Update at every
machine as if all input
was local

I n
 p u

 t

Computer 1

I n
 p u

 t

Computer 2 Input

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Multi-Station, the first networked games

• The “lock-step”
model
> Every station is

running the same
game/simulation (sim)

> Works because on a
LAN, latency is
infinitesimal

I n
 p u

 t

Computer 1

I n
 p u

 t

Computer 2 Input

4/15/11	

21	

Stepping out into Cyberspace

• Bandwidth no longer infinite
• Originally vary constrained

• 4800 bits per sec

• Better today
• So called “broadband”, still can be overload if not careful

• Latency no longer infinitesimal
•  Originally spikey up to abt 500ms.
•  Now locale dependent, but more like 200ms.

Action game needs

• Requires tight synchronization
• So called “twitch” gaming
• High pressure on latency

• Requires very frequent communication
• Min 7 to 10 packets per second per user
• Puts pressure on Bandwidth

• Games generally limited to 16 players to limit n-squared

• Can require large amounts of server processing
per player

• Depending on technique used..

4/15/11	

22	

N-squared
Its not just a good idea, its the law

• If N players are all sending packets at P packets
per second to all other players then:

Total Packets per Second = P*(N^2)

•  4 players @ 10 pps = 160 packets per second
• 12 players @ 10 pps = 1440 packets per second
• 16 players @ 10 pps = 2560 packets per second
...

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Internet Play:
Lock Step Pros and Cons
• Pros

> Cheat proof
> Exact synchronization assured

• Cons
> Every player's experience limited by worst case
> Handles latency spikes poorly
> Handles dropped players poorly

> Needs to wait for timeout to determine drop v. spike

4/15/11	

23	

Internet Techniques
Technique 1: Latency Buffering for Lock

Step games
• Observation

• Humans can handle large amounts of predictable latency
• Humans cannot handle even small amounts of unpredictable latency
• Mental Model: Steering a battleship

• Technique:
• Delay ALL rendering by maximum expected latency
• Render frame when all players data has arrived

• Pros:
• Exact synchronization across all games
• All players at same advantage/disadvantage
• No server intelligence needed (can handle many game sessions at once)

• Cons
• ‘laggy’ feeling controls
• Play is always a worst case
• Spikes over expected worst case latency stall game

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Flight Sims: Open Loop/Asynchronous
(Asynch)

• Based on work for
SimNet (DIS)
> Each system has its

own variant world
state

> Each vehicle is
simulated on one
machine
> Periodic time-stamped

state updates sent to
others

> Lower freq then
controller input

I n
 p u

 t

Computer 1

I n
 p u

 t

Computer 2 Object
State

4/15/11	

24	

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Flight Sims: Open Loop/Asynch

• Dead Reckoning
> Each sim makes “best

guess” at non-local
positions

– Use vehicle model to
assist

● “Tanks don't fly”
> Corrects as updates

are received
> Note: Updates always

in past.
> Requires conflict

resolution mechanism
> “shooter decides”

I n
 p u

 t

Computer 1

I n
 p u

 t

Computer 2 Object
State

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Internet Play:
Open Loop/Asynch Pros and Cons
• Pros

> Good at hiding latency
> Smooth predict/correct over many frames

> Better bandwidth control
> Can communicate less often

– 'shape' by distance
– Out of sight, out of mind

• Cons
> Prone to cheating

> Need to trust sender as to position
> Need to trust shooter as to hit/miss

> Occasional 'warping' or other artifacts
• In general, technique used by all vehicle sims

4/15/11	

25	

Action Games
Technique 2: Authoritative Server

• Authoritative Server
• Server = a special client

• Only server’s idea of the world is “real”
• Prevents cheating if operated by game provider

• All clients display approximations
• Server uses “latency compensation” to determine
player position at critical moments

• Basically a “look-back” latency buffer
• Checks state of game at time on player action packet to
determine results

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Quake: The first client/server game

• Server runs
authoritative
simulation

• Clients run open
loop/asynch views
> Really rich
“controllers” for
server.

I n
 p u

 t

Computer 1

I n
 p u

 t

Computer 2

Game Server

I n
 p u

 t

I n
 p u

 t O b j e c t
U p d a t e

O b j e c t

U p d a t e

4/15/11	

26	

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Quake: The first client/server game

• Pros ?

I n
 p u

 t

Computer 1

I n
 p u

 t

Computer 2

Game Server

I n
 p u

 t

I n
 p u

 t O b j e c t
U p d a t e

O b j e c t

U p d a t e

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Quake: The first client/server game

• Pros
> Cheating is much

more difficult
> Still not totally

impossible
> Aimbot

• Cons ?

I n
 p u

 t

Computer 1

I n
 p u

 t

Computer 2

Game Server

I n
 p u

 t

I n
 p u

 t O b j e c t
U p d a t e

O b j e c t

U p d a t e

4/15/11	

27	

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Quake: The first client/server game

• Pros
> Cheating is much

more difficult
> Still not totally

impossible
> Aimbot

• Cons
> What looks like hit to

shooter can miss
> “Low Ping

Bastard” (LPB) effect
I n

 p u
 t

Computer 1

I n
 p u

 t

Computer 2

Game Server

I n
 p u

 t

I n
 p u

 t O b j e c t
U p d a t e

O b j e c t

U p d a t e

Discovery

• How do you find a game people to play with?

4/15/11	

28	

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Game Discovery: LANs

• On LAN, players communicated with
broadcast
> First, broadcast play

> Only one game session per LAN
> Later, broadcast discovery, unicast play

> Multiple sessions per LAN

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Game Discover: WANs

• In Cyberspace, no one can hear you broadcast
> On Internet, players need each others IPs
> Initially, player entered manually

> Found each other through IRC
> GameSpy offers discovery service

> Programmatic, but still over IRC
> Simple directory server plus chat
> Funded by advertising on client

> TEN and MPath offer complete services
> Net APIs and star architecture comm servers

4/15/11	

29	

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Game Discovery Today
• TEN and MPath are gone
• Gamespy

> Industry standard
> has expanded data services
> Now has comm API

> Thin wrapper over peer to peer TCP/IP and UDP
> Does UDP socket introduction through IRC

> Licensed per game, advertising in Gamespy client
> Most games don't use the Gamespy client

• Xbox Live/ PC Live
> Microsoft's attempt to get into the TEN/MPath

space
> Yearly fee, electronic retailing

Unity Networking

Notes and observations based on what
we have learned so far.

4/15/11	

30	

Unity Mechanisms and
Peer to peer Examples

• Unity provides TCP/IP and RPC calls.
• Unity peer to peer example game mixes latency
buffering and psuedo dead reckoning.

• All other players are latency buffered
• In order to try to avoid control lag, local player is NOT
buffered, but actions are displayed immediately

How can this fail?

Example of Unity peer to peer
networking failure:

• Two soccer players trying to kick the ball.
• A sees himself ahead of B because his display of B is back-time but his
display of himself is current.

• A kicks the ball and sends that information out to the world as a position and
velocity of the ball

• B sees herself ahead of A because her display of A is back-time but her
display of herself is current.

• B kicks the ball and sends that information out to the world as a position and
velocity of the ball

• A receives a ball motion packet from B later then his kick and changes
the state of the ball

• Sudden “warp” effect
• B receives a packet ball motion from A later then her kick and changes
the state of the ball

• Sudden “warp” effect

• A and B show a warp and are still both out of sync.

4/15/11	

31	

Why is this solution wrong?

• Unity docs suggest giving each non-player object
a single player controller on creation

How can this fail?

Why is this solution wrong?

• Unity docs suggest giving each non-player object a
single player controller on creation
• Latency is doubled for all non local objects

• A kicks a ball belonging to B. A cannot update it but must
send a message to B saying “I kicked this”.
• B buffers that message for latency L in its latency buffer.
When A actually reaches the ball on B’s screen, B
calculates the physics and sends the result back to A.
• A similarly buffers that action for latency L until that time
is displayed, when A *finally* sees the result of the action.
• Result: Major physics lag on any object not locally
controlled.

4/15/11	

32	

Canonical Mistake

• Mixing Time Frames
• The further apart those frames, the more obvious the
errors will be and the harder they will be to correct.
• No authoritative server means not having any ‘fair’
mechanism to determine who is right.

Unity with authoritative server

• Better because at least there is a “right” answer
• To do properly would require dead-reckoning

• Players all get posts about the past, predict the
present

• Problem: Unity provides no direct access to the
physics engine.

Why is this a problem?

4/15/11	

33	

Unity with authoritative server
• Better because at least there is a “right” answer
• To do properly would require dead-reckoning

• Players all get posts about the past, predict the present.
• Problem: Unity provides no direct access to the physics
engine.

• Dead reckoning requires prediction
• remember: data is in the past, present is always predicted

• Physics is always applying forces (drag etc)
• This is deterministic
• BUT too hard to calculate if the physics engine is not available

• Unity example attempts to use simple newtonian prediction
(no forces applied)

Result?

• Very poor prediction over any significant period of time
• Only works if you keep time short

• Means flooding system with update packets
• Adds to bandwidth issues and processing costs

• What would work better?
• Send position, and vector of motion only when a force is
applied.
• Use the physics engine to predict current state from that
• Unfortunately Unity makes this impossible

• Hides physics engine
• Hides application of forces.

• Arbitrarily sealed classes make this impossible to intercept

4/15/11	

34	

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

MUDs and MMOs or..

“The British are Coming!”

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

What this lecture is about

The Evolution of MUDs and MMOs

4/15/11	

35	

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Lecture Overview, Day Two

• The evolution of the MMO
> From MUD to WOW in 30 minutes

• The Difficulties facing today's MMO developers
> The motivations for Project Darkstar

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

MUD's and MMOs

Foreign DNA

4/15/11	

36	

Day 3:
MMORPGs and Web Games

Born to Network

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Meanwhile, in merrie olde England

• The Birth of the MUD
> Multi-user text

adventures
> Event driven servers
> Textual command

based world
simulation
> User submits text, eg
“take sword”

> Server updates world
state and sends textual
reply

– Others also see text for
world state change

T e
 x t

Text terminal

T e
 x t

Text Terminal

MUD Server

T e
 x t T e
 x t

T e x t

T e x t

4/15/11	

37	

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Meanwhile, in merrie olde England

• Used concept of
“room” to break down
n-squared
communication
problem

> Only those in room
'see' changes to room
state

> Only those in room can
act on others in room

> What if you run out of
rooms?

– Virtual / 'instanced'
rooms

T e
 x t

Text terminal

T e
 x t

Text Terminal

T e
 x t

T e
 x t

T e x t

T e x t
Room Room

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Ultima Online: The Visual MUD

• 2D game for client
> Levels or “maps” as in

previous 2D games
> Each player on map

has a position
• MUD for server

> Map becomes feature
of room (Zone is
born)

> Position on map
becomes feature of
player object

I n
 p u

 t

Local Sim

I n
 p u

 t

Local Sim

T e
 x t

T e
 x t

T e x t

T e x t

Zone Zone

4/15/11	

38	

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Ultima Online: The Visual MUD

• Issues?

I n
 p u

 t

Local Sim

I n
 p u

 t

Local Sim

T e
 x t

T e
 x t

T e x t

T e x t
Zone Zone

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Ultima Online: The Visual MUD

• Issues?
> Over-crowding of
“popular rooms”
> “fire marshal limit”

> Scalability limited by
power of server
> Replicate server

> Server crash loses
state of whole world
> Static worlds
> Persistence of users

– Inventory
– Experience
– Quest flags

I n
 p u

 t

Local Sim

I n
 p u

 t

Local Sim

T e
 x t

T e
 x t

T e x t

T e x t

Zone Zone

4/15/11	

39	

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Everquest (EQ): The birth of the Shard

• EQ needed more
power
> More users
> More work per user

(3D world)
• Solved by clustering

> Server per Zone
> One cluster is called a

'shard'
> Shard is represented

to user as one 'server'
> Terminology left over

from UOL
I n

 p u
 t

Local Sim

I n
 p u

 t

Local Sim

Zone
Server

T e
 x t

T e
 x t

T e x t

T e x t
Zone

Server

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Everquest (EQ): Further load reduction

• EQ needed more
power
> More users
> More work per user (3D

world)

• Solved by clustering
> Moved MOB AI to

separate server
> A system “player”

> Other special servers
> Commerce
> Chat
> Physics (CoX)

I n
 p u

 t

Local Sim

I n
 p u

 t

Local Sim

Zone
Server

T e
 x t

T e
 x t

T e x t

T e x t

Zone
Server

AI
Server

AI
Server

4/15/11	

40	

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Everquest (EQ): Further load reduction

• Issues?
> Many single points of

partial failure
> Zone server failure

means loss of zone
state
> Like UO but only

partial loss of world
> Over crowded zones

> Return of the fire
marshall

> Under utilized zones
> Wasted CPU

resources

I n
 p u

 t

Local Sim

I n
 p u

 t

Local Sim

Zone
Server

T e
 x t

T e
 x t

T e x t

T e x t
Zone

Server
AI

Server
AI

Server

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

Phantasy Star Online: The rebirth of the
Virtual Room

• Question: Can we do better scaling then
shards?

• PSO Answer: Mission Instancing
> One standard zone as a “hub”

> Chat
> Create parties
> Get a 'mission'

> Mission is a virtual zone
> Created when party enters
> Destroyed when party leaves
> Limits n-squared to max party size
> Only has state while occupied

– Can be run on a random machine from a pool

4/15/11	

41	

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Revision A

That's the state of the art today
• Various minor tweaks

> Incremental improvements
> Different mixes of techniques

• Things to remember
> Game development is a me-too business

> Technical evolution happens slowly due to risk
> Mostly focused on client experience

> Architectural innovation happens elsewhere
> Biggest leaps are usually the adoption of techniques

already proven elsewhere

Part 2: Enter the Web

4/15/11	

42	

With the web, came web based
games

• New Problem: RequiresMassive and Cheap
scalability

• Not 10s or 100s of users per server but thousands
• Practical reasons, huge audience

• Farmville as 13 million distinct daily users

• Economic reasons
• Only 3% - 5% of users ever pay anything

• Built on enterprise web technologies
• Thats what the first developers knew
• Have been handling scale for a long time
• Problem: State is much more an issue in games

Layers of the Enterprise Stack

4/15/11	

43	

Transports
• Socket Libraries

• Symmetrical
• Peer to Peer
• ‘Peer’ could be a custom server

• “Tame” TCP/UDP
• ̀May or may not scale

• Could be custom protocol
• Eg. Sliding window UDP

• Could provide discovery
• Providers

• Gamespy
• Various Open Source

• Sun Grizzly Library
• JGN
• others

Protocol: HTTP
• Code that responds to
HTTP requests
• Glassfish 3 or Tomcat

– Built ontop of Sun Grizzly
TCP/IP library
– Servlets add
programmability (Logic)
– Supports Standard Java
persistence models

• JDBC, JDO, Hibernate, etc

4/15/11	

44	

Execution Environments
• Container Systems

• Built on top socket servers
• Highly scalable execution
• Provide an application model

• EJBs/ Servlets
• Portlets
• Darkstar/Reddwarf Applications

Portlets
• Visual widget, part of a
portal

– Column oriented
– Database backed
– Has portal DB backing it

• Liferay
– Is actually a servlet
– Supports Standard Java
persistence models
– JDBC, JDO, Hibernate, etc

• Others
– PHP, etc

4/15/11	

45	

Standard Java Persistence Models
•  JDBC

–  SQL interface,
–  Supported by most RDBMs

•  ODBC bridge available
•  JDO

–  Object database interface
–  Supported by many databases

•  Custom ORMs
–  Hibernate

•  Supports many popular RDBMs
–  Per Database vendor

Game Oriented Technologies

• Standard web stack has some serious limitations
• Not designed for multi-player

• Web page viewers are all independent users

• All state has to be checked back to the database
• slow and costly

4/15/11	

46	

Game Oriented Technologies:
Socket Servers

• Star-network hub
• Built on top transport library
• Highly scalable

• Thousands of connections
• Higher level net concepts

• “Rooms” or “Channels”
• Generally provides discovery
• Could provide limited persistence
• Limited to no execution support

• Providers
• Electro-Tank
• Smart Fox
• Red Dwarf

• Subset of Red Dwarf functionality
• Others

Game Oriented Technologies:
Darkstar/RedDwarf

• Open source game server
– Designed for low-latency
response

• Runs “ManagedObjects’
– Ala Project Darkstar
– Almost POJO
– Event driven

• Supports connected sessions
• Transparent Persistence

– Non-relational
• Transparent Multi-tasking

4/15/11	

47	

Facebook Integration

Or 50 Ways to Screw Your App

The Facebook Model

•  Like the Web… only much worse
•  Two Ways to be hosted on Facebook

– The Old Way
•  FBML
•  Just Don’t.

– The New Way
•  IFrame

4/15/11	

48	

How IFrame Works

Facebook Issues
•  Facebook is HIGHLY unreliable at doing anything but

serving its own pages
–  Its overloaded
–  They break the API weekly in new ways

•  Plan your game to rely on as little facebook
functionality as you can get away with
–  IFrame
–  Avoid using their UI calls
–  Be aware that they put ‘security’ limits on Javascript

•  Plan for facebook to fail
–  Have good fallbacks for any place you call them

