
“An ideal virtual camera system, regardless of
genre, is notable by the lack of attention given to

it by the viewer”

From Introduction to:

M. Haigh-Hutchinson,
Real-Time Cameras: A Guide for Game Designers and Developers,

Morgan Kaufmann 2009.

Note: if you donʼt notice camera, then it is working well!

Show God of War clip (with sound off to minimize distraction)

Designing and Implementing
a Dynamic Camera System

Phil Wilkins
Sony Playstation Entertainment

GDC ’08
[edited by C. Rich]

For more information see:
M. Haigh-Hutchinson, Real-Time Cameras, Morgan Kaufmann 2009.

Phil did the camera work for God of War.

Implementing something from this lecture in your game counts
towards an “A”.

Objectives

• Flexible

• Designer driven

• Smooth

• Not require player intervention

• No collision

No collision with the environment. By which I mean that it is up to the designer to
constrain the camera such that it doesnʼt go through walls.

Whenever Iʼve tried resolving camera collision with the environment in the past, itʼs
always introduced pops, or it gets hung up on geometry.

Collision geometry is designed to constrain the player, not the camera.

Overview

• Zoning

• Dynamics

• Blending

• Rails

• [Fields]

Zoning deals with the use of a spatial database to select cameras,
Dynamics is the calculation of a single dynamic camera
Blending is where we smooth out the transitions between cameras
Rails deals with constraining the camera to a path
[and in Fields Iʼll present a more advanced way of controlling
Blending]

Overview

• Zoning

• Dynamics

• Blending

• Rails

Zoning : Objectives

• Stationary Cameras

• Chosen by Player Position

A

B

A

B

Zoning : Design

The game has a spatial database of zones.

Each referencing one or more cameras, although for the moment
weʼll just deal with the case where a zone references a single
camera.

Zoning : Design

A

A

B

B

Notice zones do not touch here.

When the player moves into a zone that references a camera that
isnʼt the currently active one, we activate that camera.

This allows us to loosen up the boundaries between cameras.

This also adds hysteresis (stickiness--why?) to our system, by
playing with the boundaries of the zones.

Zoning : Design

A

A

B
B

Alternatively we can overlap the zones.

In which case, when we enter the overlap space, we always
change to the new camera.

Camera B

Camera C

Camera A

A

C

B

Zoning : Implementation

So at runtime, each frame, we query the spatial database of
zones, and get back a collection of camera references.

Since we canʼt, or donʼt want to make too many assumptions about
the zone database, we treat the results as essentially unordered.

Camera C

Camera A

A

C

B

A B C

Zoning : Implementation

A naive implementation would just compare the results from the query, against the
currently active camera, and if thereʼs a difference, swap to the new camera. This works
fine, unless your zones overlap.

In this example, when we move from zone A into the overlap between zones A and C, we
start off right, by switching to camera C,

but next frame, weʼre still in the overlap, still getting A and C back from the query, but now
C is the active camera, and A looks like itʼs new, so we swap to A. Until next frame,
when... well you get the idea, weʼre going to alternate between the two, which really isnʼt
what we want.

• Submission List

• List of all cameras that were submitted
last frame.

• Used to distinguish newly submitted
cameras from old ones

• New cameras inserted at top

• Effectively sorted by age

Zoning : Implementation

B

C

A

A

C

B

A B C

Query
Result

Submission
List

ACB

Zoning : Implementation

* Camera A is not in the submission list, so weʼll add it.
* The top item in the submission list has changed, so weʼll switch to that camera.
* When we move here, we get cameras A and C back from the query.
* Camera A is already in the submission list, but camera C isnʼt, so we add it to the top of the list.
* The top entry has changed, so we start that camera, camera C.
Next frame, we get cameras A and C back from the query again, but both are already in the submission list, so we
donʼt need to change camera.
* Now we move here, to the overlap between all three zones, and we get all three cameras in the query.
* Cameras A and C are already in the list, but camera B isnʼt, so we add it at the top.
* The top entry has changed, so we start that camera, camera B.
* When we do the next move, camera A no longer appears in the query results,
* so we remove from the submission list, but the top item doesnʼt change, so the camera stays the same
* finally we move out of zone B, camera B disappears from the Query results,
* and we remove camera B from the Submission list.
* the camera at the top has changed, so we start that camera

Camera A
Priority 1

Camera B
Priority 2

A

B

Zoning : Implementation

Another wrinkle for finer designer control: Camera priorities (2 is
higher)

Higher priorities always override lower ones.

So in this example, we can see that, whenever the player is in
zone B, camera B is active, because when weʼre in the overlap, it
has a higher priority.

B

C

A

A

C

B

A B C

Query
Result

Submission
List

A

C

B

Priority 2 2 1

Zoning : Implementation

Submission List with Priorities:
* Just like before, we start in zone A,
* and end up starting camera A
* but when we move into zone C
* we insert camera C into the submission list below camera A. This is because in order to respect priorities, we
maintain the submission list in priority order. So now this time, the top hasnʼt changed, and we donʼt change
camera.
* when move into zone B
* we insert camera B above camera A, because itʼs of equal priority, and between cameras of equal priority, we
want to retain the behaviour we had before we introduced priorities.
* so now we have a new camera at the top, so we change to that camera
* moving out of zone A results in the same behaviour we saw in the last example, as priorities have no effect on
removing entries from the submission list

Zoning Implementation
• Submission List

• Insert and delete entries to match
query results

• Unless query result was empty

• Sorted by priority

• Then by age

• Top entry is active camera

SUMMARY:

the submission list contains the current set of cameras up for consideration

insert and delete entries to match the current query results, assuming we got any

If the query was empty, then we hold the previous frames submissions (never want NO
camera!)

Sorted by priority, then age, or rather, by how recently the camera was submitted

Which results in the newest, highest priority, camera sitting at the top of the list.

Overview

• Zoning

• Dynamics

• Blending

• Rails

Overview

• Zoning

• Dynamics

• Blending

• Rails

Dynamics : Objectives

• Control the display of the Player

• Position

• Angle

• Size

So when we talk about dynamics, weʼre really talking about moving and orienting the
camera to control certain display characteristics of the player.

The players position on the screen

The angle that we are looking at them from.

and their size, which is a function of their distance from the camera, and the Field of View

Dynamics : Design

In order to control the players position on the screen, we define an area of the screen
within which it is “safe” for him to move. Safe to move without having to move the camera
to keep him in that zone.

We define a rectangular space on the screen, known as the Safe Zone. (If we want the
player to always be at a particular position, we can shrink the boundaries down to that
point.)

This is represented to the designer as a pair of resolution independent co-ordinates

...and at runtime we can overlay the safe zone on the real time display

Dynamics : Design

Both the position of the player on the screen and the angle at
which we view him depend on the angle between the camera and
the player.

We can specify the angle that weʼre viewing the player from as a
fixed value.

[In which case we use the orientation of the camera in Maya to
define that value.]

Dynamics : Design

Slightly more flexibly (camera doesnʼt move so much), is to
calculate it relative to a fixed position in space.

[Now because each dynamic camera is still defined by a camera in
Maya, we already have a convenient fixed position. That of the
camera node in Maya.]

Dynamics : Design

...and we can constrain it to within a fixed range.

[Now to specify that range, we again, use the orientation of the
camera node in Maya,]

plus or minus a fixed amount defined in the cameras attributes.

5 metres

Dynamics : Design

Finally we control the size of the player on screen, by controlling
his distance to it.

The simplest way of specifying this, is to fix it to a set value.

1.0 0.5 0.0 -0.5

Dynamics : Design

Or we can specify it as a proportion of the distance from the
camera node to the player

With negative values being behind the player, and in those cases,
we automatically turn the camera around, to look back at the
player

Minimum
Maximum

Dynamics : Design

We allow the designer to set a range of valid distances for the
camera.

Ensuring that it never gets too far from, or too close to, the
player.

(Similarly to the safe zone, we can collapse these min/max
constraints to represent a fixed distance.)

Dynamics : Implementation

Target
Position

Distance
to Target Plane

Angle to
Target

Angle to
World

SUMMARY: So thatʼs how we let the designer control the three defining properties of the camera
* the position of the player on screen
* the angle weʼre looking at him from, or rather, the orientation of the camera
* and his size, or rather, the distance from the camera to the plane of the target, perpendicular to the look vector

internally we calculate, constrain, and store these as
* the angle from the look vector of the camera, to the target. This is a 2d diagram, but in 3d this is a pair of angles,
from the horizontal, and the vertical, in camera space. We use the angles, so that we can easily represent the
cases where the target is behind the camera. It also makes it easier to apply the safe zone constraints, as these
are internally represented as a pair of angular ranges in the same space.
* the angle of the camera to the world, again, 2d diagram, consider that dotted line to be zero degrees. In 3d we
use an euler, because theyʼre easy to manipulate and visualise.
* and the distance to the target plane
* we package these up with the position of the target, and we have enough information to calculate the actual
position and orientation of the camera in the world

• Calculate Angle from Camera to Target

• Constrain Angle from Camera to Target

• Calculate Angle from Camera to World

• Constrain Angle from Camera to World

• Calculate Distance from Camera to Target Plane

• Constrain Distance from Camera to Target Plane

Dynamics : Implementation

Overview

• Zoning

• Dynamics

• Blending

• Rails

Overview

• Zoning

• Dynamics

• Blending

• Rails

Smoothing transitions between cameras (i.e., not jump cuts).

Blending : Overview

• Timers

• Ease

• Blend Space

Timers, which track and update each blend

Ease, which controls the smoothness of a blend

and Blend Space, where Iʼll define what a blend between two
cameras actually does.

Timers : Design

A

A

B

B

when we start a new camera, we donʼt cut to it, but blend into it
over a fixed period of time.

Timers : Design

A

A

B

B

A+B

And when I say blend, I mean creating a third camera from varying proportions of
two other cameras.

So when we start the second camera, what actually happens is that a phantom third
camera moves from the first camera to the second. Itʼs position and orientation
determined by a blend of the two cameras, driven by a timer.

When we move into a zone that references a new camera, as well as starting that new
camera, we also start a timer for it.

• Timer List

• Entry is a camera fading in

• Camera can have multiple timers in list

• FIFO

• New timers inserted at the top

• When a timer completes, all timers below
it are removed

Timers : Implementation

Now if the player is moving between zones, faster than their cameras fade in, then itʼs
entirely possible that weʼll be running multiple timers, simultaneously, so we need to store
these timers in a list.

In fact, you may be fading back into a camera youʼre already fading out of. In these cases
you may be tempted to try and reverse a running timer. I initially tried this, but couldnʼt get
it to work smoothly, as you need to correct all the timers between the two instances.

Instead I decided to let each timer play out, and to track new timers separately. New
cameras fade in, and by fading in, reduce the contribution of the cameras below them in
the list.

So cameras donʼt fade out by themselves, they fade out as a result of a new camera

B C 1/3

A

C

B

A B C

Submission
List

CA

Timer
List

B 1/4C 1/3A 1/1C 2/3

C 3/3

B 2/4B 3/4

B 4/4

C 2/3C 3/3

Timers : Implementation

Note the red bar at the top of the lists, this is because the top of the submission list, and the top of the timer list
should be the same camera. This is the active camera. The camera that we would cut to if we werenʼt fading it in.

zone a -> top of submission list -> starts new timer, timer list is empty, so it starts immediately
zone c -> top of submission list -> starts new timer, camera is now a blend of a and c, hence grey
zone b -> increment old timers, start new timer, camera is now a blend of a,b and c
out of zone a -> camera cʼs timer has completed, drop camera a
out of zone b -> c at top of submission list again -> start new timer, note that c is in the timer list twice
wait a second -> bʼs timer completes, drop the entries below it
wait another second -> cʼs timer completes, drop the entries below it, and weʼre back with c at 100%

C 1/3

Timer
List

B 3/4

C 3/3

3/4 3/4 B + 1/4 C

1/3 C + 2/3 (3/4 B + 1/4 C)1/3 1/2 B + 1/2 C

Timers : Implementation

So thatʼs how we maintain the timers, but how does this affect the actual blend of cameras we want?

Lets look at one of those blends in detail. I this case we have two entries for camera c, because we moved out of
itʼs zone, and back into it before the camera in-between, camera b, finished fading in.

We start with the oldest camera, and blend the next one in, using camera bʼs timer to define the proportion of
camera b to use. So in this case, itʼs 3 seconds in, out of a total of 4, so thatʼs three quarters of camera b, leaving
one quarter for camera c.

Next we take the result, and blend that with the next newest camera, the top camera c,
using, the new cameras timer. Itʼs 1 second in out of 3, so 1/3 of camera c, and 2/3 of the previous blend
which ultimately works out to be 1/2 camera b and 1/2 camera c

Ease : Design

The trouble with using the timers raw, is that you get these simple
linear blends. You can see the sharp corners here, and when
you use them to blend cameras, you can see the jerk as it starts to
move, and again when it stops. While sometimes this is desirable,
mostly itʼs just ugly.

What we want, is to add what animators call “ease”.

To do this, we feed the linear blend, into a spline.

Ease : Implementation

• Hermite Spline

• Fixed endpoints at 0 & 1

• Controllable tangents

• ease = 1 - tangent

• Ease in and out

Specifically a Hermite spline, which lets you control the position and tangent of the
endpoints of the curve.

We fix the endpoints at 0 and 1, and map the tangents into a range that makes sense as
an ʻeaseʼ control.

With 1 representing full ease, 0 no ease, or linear, and -1 giving us negative ease, for
those special times when you need a really harsh blend.

We allow the designer to control ease in and out separately.

B 3/4

C 3/3

3/4Ease (3/4, B.EaseIn, B.EaseOut)

Ease : Implementation

We apply ease when we calculate the blend factor between two
cameras.

We take the timer, and feed it into the ease function, which just
evaluates the hermite, taking ease in and out values from the new
camera.

Blend Space : Design

Thereʼs a hidden problem in what we have described so far for
blending. ???

If we blend positions (not talking about proportions here) along a
straight line, we get “blooming” effect.

Solution: Blending positions along a circular arc of fixed distance
from player.

Overview

• Zoning

• Dynamics

• Blending

• Rails

Overview

• Zoning

• Dynamics

• Blending

• Rails

Rails : Objectives

A generalization of this “camera track” idea is to borrow an idea
from the film industry. One of their solutions to this problem, is to
construct rails, and put the camera on a little cart, known as a
Dolly, that rides on the rails.

Rails : Design

Now for us, the rail is spline, specifically a NURB (constructed in
Maya).

And the Dolly is a point on that spline, represented by the
parametric value of the spline at that point.

Rails : Design

So we have rail, we have a dolly on that rail, and we have the
camera sitting on the dolly.

What we want to do, is only move the dolly by enough to keep the
player within the constraints defined by the camera.

The player is free to move within the constraints, but when he tries
to move outside them, the dolly moves to compensate as best it
can.

0
1
2

0 1 2 3

W
ei

gh
t

2.0 2.0

Dolly Position

Rails : Implementation

So how do we do that.

Well remember that the Dolly is actually just a point on the spline represented by a single parameter.
We use the constraints to calculate a weight at a given point on the spline.
Here we see that the player is 2 units outside of the constraint, so the value of the weighting function at this point,
zero, is 2.
If we move the dolly to position 1, the player is just inside the constraints, and so the weight is zero.
Between positions 1 and 2, the value remains zero, as the player remains inside both constraints.
And as we move to position 3, the player is now 2 units outside the other constraint, and the weight is 2 again.
So, armed with this weighting function, what weʼre actually trying to do, is find the nearest minima on it, to the
previous position of the dolly.

0

1

2

0 1 2

W
ei

gh
t

Dolly Position

0

1

2

0 1 2

W
ei

gh
t

Rails : Implementation

In this example, the player moves outside of the cameras constraints. Which gives us these weights.
In order to help us find the nearest minima, we add the distance from the Dollyʼs initial position to the weighting
function. ...and now the weights look like this.

Now there are a number of ways to locate the minima, but this is how we do it (classic hill-climbing)

We take a guess as to which direction the player has moved, and take an experimental step in that direction.
If the weight at the new position is lower, then we try another step.
If the weight is higher, then we turn around slow down, and go back.
If as a result of slowing down, our next move is below a certain threshold, then we stop.

The smaller the threshold, the smaller the potential error, the smoother the camera, but also, the more times youʼll
evaluate the weight.

Note: This method does NOT require calculating the derivative of the weighting function.

• Additional Weights

• Distance from Player to Dolly

• Angle from Tangent of Rail at Dolly

• Amount Boss obscures Player

• Number of minor characters out of frame

Rails : Implementation

Which means itʼs relatively easy to experiment with different weighting functions.
For example, the distance from the dolly to the player, is fairly simple, and gives you the
classic, drag or push the camera down the corridor, shot..

But the angle from the tangent of the rail at the dolly, which is the weight we would use
for the tracking shot in the example, is a bit more complex.

Much more interesting cinematic weights:

For certain special cases, like Bosses, we can use weights to deal with the boss
obscuring the player.

Probably the most complex weight we use, is related to the number of minor

Rails : Implementation

So, having calculated the position of our dolly, we combine it with
the camera dynamics we described earlier. Only instead of
calculating distance and angle from the position and orientation of
the camera node [in Maya], we derive them from the position and
orientation of the dolly (where we consider the tangent of the rail at
the dolly, to be the direction the dolly is pointing).

In fact you can consider the camera node, to be a dolly on a zero
length rail.

Overview

• Zoning

• Dynamics

• Blending

• Rails

SUMMARY: In professional quality (AAA) camera control, there is
a lot more involved than simple following cameras!

Other Stuff
• Dealing with multiple targets

• Target definition, and calculation

• Dealing with static and animated cameras

• Overriding cameras at arbitrary points to focus on dynamic
areas of interest

• Framing fights, using multiple targets

• Damping

• Fragility of rotational blends

• Physical post effects like shake and sway

Not going to talk about.

End by looking again at God of War clip and trying to see where
various techniques we talked about are used.

