
4/5/11

1

Professor Charles Rich
Computer Science Department
rich@wpi.edu

IMGD 4000 (D 11) 1

Shader Programming

Technical Game Development II

Reference: Rost, OpenGL Shading Language, 2nd Ed., AW, 2006
 “The Orange Book”
Also take CS 4731 – Computer Graphics

Shader Programming

  graphics hardware has replaced fixed
functionality with programmability in
•  vertex processing

–  transformation
–  lighting

•  fragment (per-pixel) processing
–  reading from texture memory
–  procedurally computing colors, etc.

  OpenGL Shading Language (GLSL) is a open
standard for programming such hardware

–  other languages, e.g., RenderMan, ShaderLab

IMGD 4000 (D 11) 2

4/5/11

2

IMGD 4000 (D 11) 3

OpenGL “Fixed Functionality” Pipeline

IMGD 4000 (D 11) 4

OpenGL Programmable Processors

4/5/11

3

IMGD 4000 (D 11) 5

Vertex Processor

per
vertex
only!

IMGD 4000 (D 11) 6

Fragment (Pixel) Processor

per
pixel
only!

4/5/11

4

IMGD 4000 (D 11) 7

GLSL Language

  Similar to C, C++
  Builtin vector and matrix operations:

•  vec2, vec3, vec4
•  mat2, mat3, mat4

  Texture lookup
•  sampler1D, sampler2D, sampler3D

IMGD 4000 (D 11) 8

Simple Shader Program Example

  Surface temperature coloring
•  Assume temperature is known at each vertex in

model
•  smoothly color surface to indicate temperature at

every point (using interpolation)

  Use both a vertex and a fragment shader
program working together (typical)

4/5/11

5

IMGD 4000 (D 11) 9

// parameters read from application (per primitive)
uniform float CoolestTemp;
uniform float TempRange;

// incoming property of this vertex
attribute float VertexTemp;

// to communicate to the fragment shader
varying float Temperature;

void main()
{
 // communicate this vertex's temperature scaled to [0.0, 1.0]
 Temperature = (VertexTemp - CoolestTemp) / TempRange;

 // don't move this vertex
 gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}

Vertex Shader

IMGD 4000 (D 11) 10

Fragment Shader

// parameters read from application (per primitive)
uniform vec3 CoolestColor;
uniform vec3 HottestColor;

// interpolated value from vertex shader
varying float Temperature;

void main()
{
 // compute a color using built-in mix() function
 vec3 color = mix(CoolestColor, HottestColor, Temperature);

 // set this pixel's color (with alpha blend of 1.0)
 gl_FragColor = vec4(color, 1.0);
}

4/5/11

6

IMGD 4000 (D 11) 11

Shader Execution

  Vertex shader is run once per vertex
  Fragment shader is run once per pixel
  Many such executions can happen in parallel
  No communication or ordering between

executions
•  no vertex-to-vertex
•  no pixel-to-pixel

IMGD 4000 (D 11) 12

Moving Vertices in Vertex Shader
uniform vec3 LightPosition;
uniform vec3 SurfaceColor;
uniform vec3 Offset;
uniform float ScaleIn;
uniform float ScaleOut;
varying vec4 Color; // color calculation for pixel shader

void main()
{
 vec3 normal = gl_Normal;
 vec3 vertex = gl_Vertex.xyz +
 noise3(Offset + gl_Vertex.xyz * ScaleIn) * ScaleOut;

 // default color calculation based on new vertex location
 normal = normalize(gl_NormalMatrix * normal);
 vec3 position = vec3(gl_ModelViewMatrix * vec4(vertex,1.0));
 vec3 lightVec = normalize(LightPosition - position);
 float diffuse = max(dot(lightVec, normal), 0.0);
 if (diffuse < 0.125) diffuse = 0.125;
 Color = vec4(SurfaceColor * diffuse, 1.0);

 gl_Position = gl_ModelViewProjectionMatrix * vec4(vertex,1.0);
}

4/5/11

7

IMGD 4000 (D 11) 13

Trivial Fragment Shader

varying vec4 Color;

void main()
{
 gl_FragColor = Color;
}

Procedural Textures - Stripes

IMGD 4000 (D 11) 14

4/5/11

8

IMGD 4000 (D 11) 15

Fragment Shader for Stripes
uniform vec3 StripeColor;
uniform vec3 BackColor;
uniform vec3 Width;
uniform float Fuzz;
uniform float Scale;

varying vec3 DiffuseColor;
varying vec3 SpecularColor;

void main()
{
 float scaledT = fract(gl_TexCoord[0].t * Scale);

 float frac1 = clamp(scaledT / Fuzz, 0.0, 1.0);
 float frac2 = clamp((scaledT – Width) / Fuzz, 0.0, 1.0);

 vec3 finalColor = mix(BackColor, StripeColor, frac1)
 finalColor = finalColor * DiffuseColor + SpecularColor;

 gl_FragColor = vec4(finalColor, 1.0);

}

Shaders in Engines

  C4
•  material type selection (predefined shaders)
•  shader editor (restricted functionality)
•  no direct access to shader code

  Unity
•  predefined shaders (via GUI’s)
•  can write your own in GLSL or Shaderlab (similar)

IMGD 4000 (D 11) 16

4/5/11

9

IMGD 4000 (D 11) 17

Lots More You Can Do With Shaders

  Procedural Textures
•  patterns (stripes, etc.)
•  bump mapping

  Lighting Effects
  Shadows
  Surface Effects

•  refraction, diffraction

  Animation
•  morphing
•  particles

IMGD 4000 (D 11) 18

Lots More ...

  Anti-aliasing
  Non-photorealistic effects

•  hatching, meshes
•  technical illustration

  Imaging
•  sharpen, smooth, etc.

  Environmental effects (RealWorldz)
•  terrain
•  sky
•  ocean

4/5/11

10

IMGD 4000 (D 11) 19

Shader Programming

  Seems to lie on the boundary between art
and tech
•  programming is hard-core (parallel algorithms)
•  but intended result is often mostly aesthetic

  Additional option for “A” in final game project:
•  write a simple Shaderlab or GLSL shader program

(and use it in your game)

 Screen shot of the SolidWorks application, showing a jigsaw rendered with OpenGL shaders to simulate a
chrome body, galvanized steel housing, and cast iron blade. (Courtesy of SolidWorks Corporation)"

20 IMGD 4000 (D 11)

4/5/11

11

Different glyphs applied to a cube using the glyph bombing shader
described in Section 10.6. (3Dlabs, Inc.)"

21 IMGD 4000 (D 11)

The lattice shader presented in Section 11.3 is applied to the cow model. (3Dlabs, Inc.)"

22 IMGD 4000 (D 11)

4/5/11

12

A simple box and a torus that have been bump-mapped using the
procedural method described in Section 11.4. (3Dlabs, Inc.)"

23 IMGD 4000 (D 11)

A variety of materials rendered with Ward's BRDF model (see
Section 14.3) and his measured/fitted material parameters."

24 IMGD 4000 (D 11)

4/5/11

13

Brick shader with and without antialiasing. On the left, the results of the brick shader presented in Chapter
6. On the right, results of antialiasing by analytic integration using the brick shader described in Section
17.4.5. (3Dlabs, Inc.)"

25 IMGD 4000 (D 11)

 A variety of screen shots
from the 3Dlabs
RealWorldz demo.
Everything in this demo is
generated procedurally
using shaders written in
the OpenGL Shading
Language. This includes
the planets themselves,
the terrain, atmosphere,
clouds, plants, oceans,
and rock formations.
Planets are modeled as
mathematical spheres, not
height fields. These
scenes are all rendered at
interactive rates on current
generation graphics
hardware"

26 IMGD 4000 (D 11)

