
3/22/10

1

Professor Charles Rich
Computer Science Department
rich@wpi.edu

IMGD 4000 (D 10) 1

Autonomous Movement

Technical Game Development II

[see Buckland, Ch. 3
 Millington, Ch. 3
 http://opensteer.sourceforge.net]

IMGD 4000 (D 10) 2

Introduction

  A fundamental requirement in many games is to
move characters (player avatar and NPC’s) around
realistically/pleasantly

  For some games, e.g., FPS, realistic NPC movement
is pretty much all there is (except shooting)--there is
no higher level decision making

  At other extreme, e.g., chess, there is no “movement”
per se---pieces just placed

  We’re going to treat everything in 2D today, since
most game motion in gravity on surface (2 1/2 D)

3/22/10

2

IMGD 4000 (D 10) 3

Craig Reynolds

  The “giant” in this area---his influence cannot
be overstated
•  1987: “Flocks, Herds and Schools: A Distributed

Behavioral Model,” Computer Graphics
•  1998: Winner of Academy Award in Scientific and

Engineering category
•  1999: “Steering Behaviors for Autonomous

Characters,” Proc. Game Developers Conference
•  Currently at U.S. R&D group of Sony Computer

Entertainment

IMGD 4000 (D 10) 4

The “Steering” Model

Action Selection

Steering

Locomotion

Choosing goals and plans,
e.g.

•  “go here”

•  “do A, B, and then C” •  Calculate trajectories to
satisfy goals and plans

•  Produce steering force that
determines where and how
fast character moves
Mechanics (“how”) of motion

•  differs for characters, e.g.,
fish vs. horse

•  independent of steering

3/22/10

3

IMGD 4000 (D 10) 5

Locomotion Dynamics
class Body
 // point mass of rigid body
 mass // scalar
 position // vector
 velocity // vector

 // orientation of body
 heading // vector

 // dynamic properties of body
 maxForce // vector
 maxSpeed // scalar
 maxRotation // scalar (not used)

 def update (dt) {
 force = ...; // combine forces from steering behaviors
 acceleration = force / mass; // Newton's 2nd law
 velocity += truncate(acceleration * dt, maxSpeed);
 position += velocity * dt;
 // unless almost stopped
 if (|velocity| > 0.00000001)
 // update heading to face along velocity vector
 heading = ...velocity...;
 }

Locomotion

IMGD 4000 (D 10) 6

Individual Steering Behaviors

seek flee

arrive pursue

wander evade

interpose hide

avoid obstacles
& walls follow path

and combinations thereof.....

Steering

3/22/10

4

IMGD 4000 (D 10) 7

Steering Methods
class Body
 def update (dt) {
 force = ...; // combine forces from steering behaviors
 ...}

 def seek (target) { ... return force; }

 def flee (target) { ... return force; }

 def arrive (target) { ... return force; }

 def pursue (body) { ... return force; }

 def evade (body) { ... return force; }

 def hide (body) { ... return force; }

 def interpose (body1, body2) { ... return force: }

 def wander () { ... return force; }

 def avoidObstacles () { ... return force; }
 ...

Steering

IMGD 4000 (D 10) 8

Seek

target

velocity

desired velocity

steering force
 def seek (target) {
 // vector from here to target scaled by maxSpeed
 desired = truncate(target - position, maxSpeed);
 return desired - velocity;
 }

DEMO

3/22/10

5

IMGD 4000 (D 10) 9

Problem with Seek

  Overshoots target
  Amount of overshoot determined by ratio of

maxSpeed to maxForce
  Intuitively, needs to decelerate as gets closer

IMGD 4000 (D 10) 10

Arrive
target

velocity

desired velocity

steering force

 def arrive (target) {

 distance = |target - position|; // to target
 if (distance == 0) return [0,0];

 // current speed required to arrive at rest at target
 // deceleration time is a “tweak” variable
 speed = distance / DECELERATION;

 // current speed cannot exceed body maxSpeed
 speed = min(speed, maxSpeed);

 // vector from here to target scaled by speed
 desired = (target - position) * speed / distance;

 // return steering force as in seek
 return desired - velocity;
 }

3/22/10

6

IMGD 4000 (D 10) 11

Arrive Behavior

  When body is far away from target, it behaves
just like seek, i.e., it closes at maximum
speed

  Deceleration only comes into effect when the
body gets close to the target, i.e. when
‘speed’ becomes less than ‘maxSpeed’ in:

speed = min(speed, maxSpeed);

DEMO

IMGD 4000 (D 10) 12

Flee (Opposite of Seek)

target

velocity

desired
velocity

steering
force
(probably
truncated by
maxForce)

 def flee (target) {

 desired = truncate(position - target, maxSpeed);
 return desired - velocity;
 }

 if (|position - target| > PANIC) return [0,0];

DEMO

3/22/10

7

IMGD 4000 (D 10) 13

Pursue (Seek Predicted Position)

target

velocity

desired velocity

steering force

evader

pursuer

 Note:

•  success of pursuit depends on
how well can predict evader’s
future position

•  tradeoff of CPU time vs. accuracy

•  special case: if evader almost
dead ahead, just seek

IMGD 4000 (D 10) 14

Pursue

 def pursue (body) {

 toBody = body.position - position;

 // if within 20 degrees ahead, simply seek
 if (toBody * heading > 0
 && heading * toBody.heading < -0.95)
 return seek(body.position);

 // calculate lookahead time based on distance and speeds
 dt = |toBody| / (maxSpeed + |body.velocity|);

 // seek predicted position
 return seek(body.position + (body.velocity * dt));
 }

DEMO

3/22/10

8

IMGD 4000 (D 10) 15

Evade (Opposite of Pursue)

 def evade (body) {

 // no special case check for dead ahead

 // calculate lookahead time based on distance and speeds
 dt = |position - body.position| / (maxSpeed + |body.velocity|);

 // flee predicted position
 return flee(body.position + (body.velocity * dt));
 }

IMGD 4000 (D 10) 16

Pursue with Offset

  Steering force to keep body at specified offset
from target body

  Useful for:
•  marking an opponent in a sports simulation
•  docking with a spaceship
•  shadowing an aircraft
•  implementing battle formations

  NB: This is not “flocking”, which we will see
later

3/22/10

9

IMGD 4000 (D 10) 17

Pursue with Offset
target

velocity

desired velocity

steering force leader
pursuer

offset

 def pursue (body, offset) {
 // calculate lookahead time based on distance and speeds
 dt = |position - (body.position + offset)|
 / (maxSpeed + |body.velocity|);
 // arrive at predicted offset position (vs. seek)
 return arrive(body.position + offset + (body.velocity * dt));
 }

DEMO

IMGD 4000 (D 10) 18

Interpose

  Similar to pursue
  Return steering force to move body to

midpoint of imaginary line connecting two
bodies

  Useful for:
•  bodyguard taking a bullet
•  soccer player intercepting a pass

  Like pursue, main trick is to estimate
lookahead time (dt) to predict target point

3/22/10

10

IMGD 4000 (D 10) 19

Interpose

(1) Bisect line between bodies

(2) Calculate dt to bisection point

(3) Target arrive at midpoint of predicted positions

IMGD 4000 (D 10) 20

Interpose

 def interpose (body1, body2) {

 // lookahead time to current midpoint
 dt = |body1.position + body2.position| / (2 * maxSpeed);

 // extrapolate body trajectories
 position1 = body1.position + body1.velocity * dt;
 position2 = body2.position + body2.velocity * dt;

 // steer to midpoint
 return arrive(position1 + position2 / 2);
 }

DEMO

3/22/10

11

IMGD 4000 (D 10) 21

Path Following

  Create steering force that moves body along
a series of waypoints (open or looped)

  Useful for:
•  patrolling (guard duty) agents
•  predefined paths through difficult terrain
•  racing cars around a track

looped
path

open
path

IMGD 4000 (D 10) 22

Path Following

  Invoke ‘seek’ on each waypoint until ‘arrive’ at
finish (if any)

path = ...; // (circular) list of waypoints
current = path.first() ; // current waypoint vector

def followPath () {

 if (|current - position| < SEEK_DISTANCE)
 if (path.isEmpty())
 return arrive(current);
 else
 current = path.next();

 return seek(current);
}

3/22/10

12

IMGD 4000 (D 10) 23

Path Following

  Very sensitive to SEEK_DISTANCE and ratio of
maxForce to maxSpeed (in underlying
locomotion model)
•  tighter path following for interior corridors
•  looser for open outdoors

DEMO

IMGD 4000 (D 10) 24

Wander

  Goal is to produce a steering force which
gives impression of a random walk though the
agent’s environment

  Naive approach:
•  calculate random steering force each update step
•  produces unpleasant “jittery” behavior

  Reynold’s approach:
•  project a circle in front of body
•  steer towards a randomly moving target

constrained along perimeter of the circle

3/22/10

13

IMGD 4000 (D 10) 25

Wander

steering force

target

wander distance

wander
radius

wander distance

wander
radius

IMGD 4000 (D 10) 26

Wander

 // initial random point on circle
 wanderTarget = ...;

 def wander () {

 // displace target random amount
 wanderTarget += [random(0, JITTER), random(0, JITTER)];

 // project target back onto circle
 wanderTarget.normalize();
 wanderTarget *= RADIUS;

 // move circle wander distance in front of agent
 wanderTarget += bodyToWorldCoord([DISTANCE, 0]);

 // steer towards target
 return wanderTarget - position;
 }

target

wander distance

wander
radius

DEMO

3/22/10

14

IMGD 4000 (D 10) 27

Obstacle Avoidance

  Treat obstacles as circular bounding volumes
  Basic idea: extrude “detection box” in front of

body in direction of motion

IMGD 4000 (D 10) 28

Obstacle Avoidance Algorithm

1.  Find closest intersection point
2.  Calculate steering force to avoid obstacle

3/22/10

15

IMGD 4000 (D 10) 29

Obstacle Avoidance Algorithm

1.  Find closest intersection point
(a) discard all obstacles which do not overlap with

detection box
(b) expand obstacles by half width of detection box
(c)  find intersection points of trajectory line and

expanded obstacle circles
(d) choose closest intersection point in front of body

IMGD 4000 (D 10) 30

lateral force

braking force

Obstacle Avoidance Algorithm

2.  Calculate steering force
(a) combination of lateral and braking force
(b) each proportional to body’s distance from

obstacle (needs to react quicker if closer)

DEMO

3/22/10

16

IMGD 4000 (D 10) 31

Hide

  Attempt to position body so that an obstacle
is always between itself and other body

  Useful for:
•  NPC hiding from player

–  to avoid being shot by player
–  to sneak up on player (combine hide and seek)

IMGD 4000 (D 10) 32

Hide

(a) for each obstacle, determine hiding spot
(b) if no hiding spots, invoke ‘evade’
(c) otherwise,invoke ‘arrive’ to closest hiding spot

3/22/10

17

IMGD 4000 (D 10) 33

Hide - Possible Refinements

  Only hide if you can “see” other body
•  tends to look dumb (i.e., agent has no memory)
•  can improve by adding time constant, i.e., hide if

you saw other body in last <n> seconds
  Only hide if you can “see” other body and

other body can see you

IMGD 4000 (D 10) 34

Hide - Possible Refinements

  Instead of always choosing closest hiding
spot, favor spots that are behind or to side of
other body

3/22/10

18

IMGD 4000 (D 10) 35

Hide - Possible Refinements

  Add “panic distance” (like flee behavior)

def hide (body) {
 if (|position - target| > PANIC) return [0,0];
 ...
}

DEMO

IMGD 4000 (D 10) 36

Wall Avoidance

steering
force

penetration depth

(a)  test for intersection of three “feelers” with wall

(b) calculate penetration depth of closest intersection

(c)  return steering force perpendicular to wall with
magnitude equal to penetration depth

3/22/10

19

Combining Steering Behaviors

  battle bot
•  path following
•  wall avoidance
•  separation (to do)

  animal simulation (e.g., sheep)
•  wander
•  obstacle avoidance (e.g., trees)
•  evade (e.g., predator)

IMGD 4000 (D 10) 37

IMGD 4000 (D 10) 38

Combining Steering Forces
class Body
 def update (dt) {
 force = ...; // combine forces from steering behaviors
 ...}

 def seek (target) { ... return force; }

 def flee (target) { ... return force; }

 def arrive (target) { ... return force; }

 def pursue (body) { ... return force; }

 def evade (body) { ... return force; }

 def hide (body) { ... return force; }

 def interpose (body1, body2) { ... return force: }

 def wander () { ... return force; }

 def avoidObstacles () { ... return force; }
 ...

3/22/10

20

IMGD 4000 (D 10) 39

Combining Steering Forces

  Two basic approaches:
•  blending
•  priorities

  Advanced combined approaches:
•  weighted truncated running sum with prioritization

[Buckland]
•  prioritized dithering [Buckland]
•  pipelining [Millington]

  All involve significant tweaking of parameters

IMGD 4000 (D 10) 40

Blending Steering

  All steering methods are called, each
returning a force (could be [0,0])

  Forces combined as linear weighted sum:
 w1F1 + w2F2 + w3F3 + ...

•  weights do not need to sum to 1
•  weights tuned by trial and error

  Final result will be limited (truncated) by
maxForce

3/22/10

21

IMGD 4000 (D 10) 41

Blended Steering - Problems

  Expensive, since all methods called every tick
  Conflicting forces not handled well

•  tries to “compromise”, rather than giving priority
•  e.g., avoid obstacle and seek, can end up partly

penetrating obstacle
  Very hard to tweak weights to work well in all

situations

IMGD 4000 (D 10) 42

Prioritized Steering

  Intuition: Many of steering behaviors only
return a force in appropriate conditions

  Algorithm:
•  Sort steering methods into priority order
•  Call methods one at a time until first one returns

non-zero force
•  Apply that force and stop evaluation (saves CPU)

  Variation:
•  Define groups of behaviors with blending inside

each group and priorities between groups

3/22/10

22

IMGD 4000 (D 10) 43

Prioritized Dithering (Reynolds)

  In addition to priority order, associate a
probability with each steering method

  Use random number and probability to
sometimes skip some methods in priority
order (on some ticks)

  Gives lower priority methods some influence
without problems of blending

IMGD 4000 (D 10) 44

Ensuring Zero Overlap

  Often, when combining behaviors in the
presence of multiple bodies, the bodies will
occasionally overlap one another (they’re not
obstacles!)

  If bounding spheres overlap, just “teleport” to
touching distance (ignore dynamics)

DEMO

3/22/10

23

IMGD 4000 (D 10) 45

Smoothing - The Problem

  Conflicting behaviors can alternate, causing
“judder” (jitter/shudder)
•  e.g., avoidObstacle and seek

–  avoidObstacle forces you away from obstacle until it is
out of range

–  seek pushes you back into range
–  ...

t=1 t=2 t=3

avoid

seek

avoid

IMGD 4000 (D 10) 46

Smoothing - The Solution

  Ideally to avoid problem, forsee conflict ahead
of time--but can be complicated and
expensive to compute

  Simple hack (per Robin Green, Sony):
•  decouple heading from velocity vector
•  average heading over “several” ticks
•  tune number of ticks for smoothing (keep small to

minimize memory and CPU)
•  not perfect solution, but produces adequate results

at low cost

3/22/10

24

IMGD 4000 (D 10) 47

Group Steering Behaviors - “Flocking”

  Combination of three behaviors:
•  cohesion
•  separation
•  alignment

  Each applied to neighbors

DEMO

IMGD 4000 (D 10) 48

Neighbors

  Variation:
•  restrict neighborhood to field of view (e.g., 270

deg.) in front
•  may be more realistic in some applications

neighborhood
radius

3/22/10

25

IMGD 4000 (D 10) 49

Separation

  Create force that steers body away from
others in neighborhood

IMGD 4000 (D 10) 50

Separation

  Vector to each neighbor is normalized and
divided by the distance (i.e., stronger force for
closer neighbors)

def separation () {
 force = [0,0];
 for each neighbor
 direction = position - neighbor.position;
 force += normalize(direction) / |direction|;
 return force;
}

3/22/10

26

IMGD 4000 (D 10) 51

Alignment

  Attempt to keep body’s heading aligned with
its neighbors headings

IMGD 4000 (D 10) 52

Alignment

  Return steering force to correct towards
average heading vector of neighbors

heading

average heading of
neighbors

steering force

def alignment () {
 average = [0,0];
 for each neighbor
 average =+ neighbor.heading;
 average /= |neighbors|;
 return average - heading;
}

3/22/10

27

IMGD 4000 (D 10) 53

Cohesion

  Produce steering force that moves body
towards center of mass of neighbors

IMGD 4000 (D 10) 54

Cohesion

def cohesion () {
 center = [0,0];
 for each neighbor
 center += neighbor.position;
 center /= |neighbors|;
 seek(center);
}

3/22/10

28

IMGD 4000 (D 10) 55

Flocking

  An “emergent behavior”
•  looks complex and/or purposeful to observer
•  but actually driven by fairly simple rules
•  component entities don’t have the big picture

  Often used in films
•  bat and penguins in Batman Returns
•  orc armies in Lord of the Rings

DEMO

IMGD 4000 (D 10) 56

Connecting Steering to Action Selection

Action Selection

Steering

Locomotion

Choosing goals and plans,
e.g.

•  “go here”

•  “do A, B, and then C”

3/22/10

29

IMGD 4000 (D 10) 57

Turning Steering Methods On & Off
class Body
 seekTarget = null;
 fleeTarget = null;
 ...
 wanderOn = false;
 ...

 def think () { ... }

 def update (dt) {
 think();
 force = [0,0];
 if (seekTarget != null) force = combine(force, seek(seekTarget));
 if (fleeTarget != null) force = combine(force, flee(fleeTarget));
 ...
 if (wanderOn) force = combine(force, wander());
 ...
 }

 def seek (target) { ... return force; }
 def flee (target) { ... return force; }
 ...
 def wander () { ... return force; }
 ...

