
1

Professor Charles Rich
Computer Science Department
rich@wpi.edu

IMGD 4000 (D 10) 1

Advanced Pathfinding

Technical Game Development II

References: Buckland, Chapter 5, 8
 Millington, Chapter 4

IMGD 4000 (D 10) 2

A* Pathfinding Search

  Covered in IMGD 3000
  Review below if needed

References: Buckland, Chapter 5 (pp. 241-247)
 Millington, Section 4.3

2

IMGD 4000 (D 10) 3

Practical Path Planning

  Just raw A* not enough
  Also need:

•  navigation graphs
–  points of visibility (POV)
–  navmesh

•  path smoothing
•  compute-time optimizations
•  hierarchical pathfinding
•  special case methods

IMGD 4000 (D 10) 4

Navigation Graph Construction

  Tile (cell) based
•  very common, esp. if env’t already designed in

squares or hexagons
•  node center of cell; edgest to adjacent cells
•  each cell already labeled with material (mud, etc.)
•  downside:

– modest 100x100 cell map
–  10,000 nodes and 78,000 edges
–  can burden CPU and memory, especially if multiple AI’s

calling in

Rest of lecture is a survey about how to do better...

3

IMGD 4000 (D 10) 5

Point of Visibility (POV) Navigation Graph

  Place graph nodes (usually by hand) at
important points in env’t

  Such that each node has line of sight to at
least one other node

IMGD 4000 (D 10) 6

POV Navigation

•  find closest visible node (a) to current location
•  find closest visible node (b) to target location
•  search for least cost path from (a) to (b)
•  move to (a)
•  follow path to (b)
•  move to target location

note “backtracking”

4

IMGD 4000 (D 10) 7

Blind Spots in POV

  No POV point is visible from red spots!
  Easy to fix manually in small graphs
  A problem in larger graphs

DEMO

IMGD 4000 (D 10) 8

POV Navigation

  Obvious how to build and expand
  Downsides

•  can take a lot of developer time, especially if
design is rapidly evolving

•  problematic if random or user generated maps
•  can have “blind spots”
•  can have “jerky” paths

  Solutions
•  automatically generate POV graphs
•  make finer grained graphs
•  path smoothing

5

IMGD 4000 (D 10) 9

Automatic POV by Expanded Geometry

1.  expand geometry by
amount proportional
to bounding radius of
agents

2.  add vertices to graph
3.  prune non line of

sight points

IMGD 4000 (D 10) 10

NavMesh

  network of convex polygons
  very efficient to search
  can be automatically generated from polygons
  becoming very popular

6

IMGD 4000 (D 10) 11

Finely Grained Graphs

  Improves blind spots and path smoothness

  Typically generate automatically using “flood fill”

  Back to similar performance issues as tiled graphs

IMGD 4000 (D 10) 12

Flood Fill

•  same algorithm as
in “paint” programs

7

IMGD 4000 (D 10) 13

Path Finding in Finely Grained Graph

  use A* or Dijkstra depending on whether
looking for one or multiple targets

IMGD 4000 (D 10) 14

Kinky Paths

The solution: Path smoothing

8

IMGD 4000 (D 10) 15

Simple Smoothing Algorithm

  Check for “passability” between adjacent edges

IMGD 4000 (D 10) 16

Smoothing Example

DEMO

9

IMGD 4000 (D 10) 17

Methods to Reduce CPU Overhead

shortest path table
(next node) path cost table

time/space tradeoff

IMGD 4000 (D 10) 18

Hierarchical Path Planning

  reduces CPU overhead
  typically two levels, but can be more
  first plan in high-level, then refine in low-level

10

IMGD 4000 (D 10) 19

Getting Out of Sticky Situations

•  bot gets “wedged” against wall
•  looks really bad!

DEMO

IMGD 4000 (D 10) 20

Getting Out of Sticky Situations

  Heuristic:
•  calculate the distance to bot’s current waypoint

each update step
•  if this value remains about the same or

consistently increases
•  then it’s probably wedged
•  backup and replan

11

IMGD 4000 (D 10) 21

Advanced Pathfinding Summary

  You would not necessarily use all of these
techniques in one game

  Only use whatever your game demands and
no more

