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Game Engines 

Technical Game Development II 

Pedagogical Goal 

  Your technical skills should not be tied to any 
particular game engine 

  Just like your programming skills should not 
be tied to any particular programming 
language 

  Use the best tools for each job 

  ... or the tools you were given  
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Definition 

Game Engine 
A series of modules and interfaces that allows a 

development team to focus on product game-
play content, rather than technical content. 
                    [Julian Gold, OO Game Dev.] 

  But this class is about “the technical content” !  
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Buy versus Build 

  Depends on your needs, resources and 
constraints 
•  technical needs (e.g., “pushing the envelope” ?) 
•  financial resources (e.g., venture capital ?) 
•  time constraints (e.g., 1 mo. or 2 yr. ?) 
•  platform constraints (e.g., Flash ?) 
•  other factors (e.g., sequel ?) 

  Most games commonly built today with some 
sort of “engine layer” 



3/16/10 

3 

IMGD 4000 (D 10) 5 

Types of Engine Architectures (Roughly) 

  Monolithic (e.g., Unreal Engine) 

  Modular (e.g., C4 Engine) 

  Tool Kit (e.g., jME) 

IMGD 4000 (D 10) 6 

Monolithic Engines (e.g., Unreal) 

  “old style”--typically grew out of specific game 

  tend to be genre-specific 

  difficult to go beyond extensions/modifications 
not anticipated in (e.g., scripting) API 

  proven, comprehensive capabilities 
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Modular Engines (e.g., C4) 

  “modern”--often developed by game engine 
company 

  use object-oriented techniques for greater 
modularity 

  much easier to extend/replace components 
than monolithic engines 

  architecture a bit more “bundled” (IDE-like) 
than tool-kit engines (see next) 
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Tool Kit Engines (e.g., jME) 

  highly object-oriented 

  designed for maximum modifiability 

  typically open source 

  may not be as complete or mature 
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Basic Game Engine Architecture Blocks 

operating system 

ai 

animation 

camera 

controllers 

effects 

game 

geometry 

graphics 

gui 

input 

level builder 

modeler 

physics 

scene graph 

sound 

renderer 
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Choices:  “It’s a Jungle Out There” 

  290 3D engines reviewed at DevMaster.net 

  We are not going to try to review them all here 
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Many Evaluation Dimensions/Features 
[ DevMaster.net ] 

If there’s a feature term here you don’t 
know, you should look it up! 
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Best Choice is Relative to Situation 

  Similar issues of needs, resources and 
constraints (as in buy vs. build)  
•  platform, programming language constraints 
•  cost constraints (commercial run $ to $$$) 
•  specific technical features required (e.g., MMO) 
•  previous experience of staff 
•  support from developers, user community (e.g., 

forums) 
•  pedagogical goals (e.g., this course) 
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Choice of C4 and jME for IMGD 3000/4000 

  C4 Engine                   http://www.terathon.com/c4engine 
•  modular 
•  C++ language (industry standard) 
•  reasonable cost 
•  technically sophisticated  
•  good support community (forum) 
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Choice of C4 and jME for IMGD 3000/4000 

  jME (jMonkeyEngine)     http://jmonkeyengine.com 

•  tool kit 
–  API to ODE and  PhysX   https://jmephysics.dev.java.net 
–  JGN for lightweight networking    http://code.google.com/p/jgn 
–  FengGUI for HUD’s and other GUI’s     http://www.fenggui.org 

•  Java language  
–  “up and coming”, especially for mobile 
– much less error-prone than C++ 

•  free, open source 
•  technically sophisticated  
•  good support community (forum) 

http://www.ardor3d.com 
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C4 and jME Comparison 

  Architecture 

  Guided Tour of Tutorial Examples 

  Feature comparison 

16 IMGD 4000 (D 10) 
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Guided Tour of Tutorial Examples 

  Why are we doing this? 
•  not to save you the trouble of reading the 

documentation!   (You will need to anyways :-) 
–  leaving out many details (e.g., error checking) 
–  reordering for clarity (e.g., combining .h and .cpp files) 

•  not interested in low-level C++ vs. Java coding 
differences 

•  goal is to better understand the design space of 
engines by looking closely at different choices made 

•  more generally, thoughtful reading of other people’s 
code is an important skill for software developers 

–  paying close attention to modularity and architecture  

module C4::Application *ConstructApplication(void)  // called by C4 engine 
{ return (new Game); } 

class Game : public Application { 

  private: EntityRegistration ballEntityReg; // for World Editor 
           MovementAction *forwardAction; // typical input control 

  Game() : 
    ballEntityReg(kEntityBall, "model/Ball", kEntityPrecache, kControllerBall) 
  { 
    ballEntityReg.SetEntitySize(0.125F, 0.125F, 0.125F); 
    ballEntityReg.SetEntityColor(ColorRGB(0.0F, 1.0F, 0.0F)); 
    TheWorldMgr->SetWorldConstructor(&ConstructWorld); 
    // create and register movement actions 
    forwardAction = new MovementAction(kActionForward, kSpectatorMoveForward); 
    TheInputMgr->AddAction(forwardAction); 
  } 

  class MovementAction : public Action { 

    void Begin(void) 
    { 
      GameWorld *world = static_cast<GameWorld *>(TheWorldMgr->GetWorld()); 
      SpectatorCamera *camera = world->GetSpectatorCamera(); 
      camera->SetSpectatorFlags(camera->GetSpectatorFlags() | movementFlag); 
    } 
  }; 

  World *ConstructWorld(const char *name, void *data) // called by TheWorldMgr 
  { return (new GameWorld(name)); } 
}; 

20 IMGD 4000 (D 10) 
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class GameWorld : public World { 

  private: SpectatorCamera spectatorCamera; 

  GameWorld(const char *name) : 
      World(name), 
      spectatorCamera(2.0F, 1.0F, 0.3F) {} 

  WorldResult Preprocess(void) 
  { 
    Zone *zone = GetRootZone(); 
    const Marker *marker = zone->GetFirstMarker(); 
    while (marker)  // find World Editor marker for camera placement 
      { 
        MarkerType type = marker->GetMarkerType(); 
        if (type == kMarkerLocator) 
          { 
            if (static_cast<const LocatorMarker *>(marker)->GetLocatorType() == kLocatorSpectator) 
              { 
                spectatorCamera.SetNodePosition(marker->GetWorldPosition()); 
                const Vector3D direction = marker->GetWorldTransform()[0]; 
                float azimuth = Atan(direction.y, direction.x); 
                float altitude = Atan(direction.z, Sqrt(...)); 
                spectatorCamera.SetCameraAzimuth(azimuth); 
                spectatorCamera.SetCameraAltitude(altitude); 
              } 
          } 
        marker = marker->ListElement<Marker>::Next(); 
      } 
    SetCamera(&spectatorCamera); // set world's camera for rendering 
    return (kWorldOkay); 
  } 
}; 
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public abstract class AbstractGame { // in com.jme.app 

    protected DisplaySystem display; 

    public final void start() { 
      initSystem(); 
      initGame(); 
      while (!finished && !display.isClosing()) { 
        InputSystem.update(); 
        update(); 
        render(); 
      } 
    } 
} 

public class SimpleGame extends AbstractGame { 

    public static void main(String[] args) { // called by JVM 
      new SimpleGame().start(); 
    } 

    protected Camera camera; 
    protected InputHandler input; 
    protected LightState lightState; 
    protected Node rootNode; // NB 

    protected final void update() { 
      timer.update(); // recalculate frame rate 
      float tpf = timer.getTimePerFrame(); 
      input.update(tpf); // check for key/mouse events 
      rootNode.updateGeometricState(tpf, true); 
    } 

    protected final void render() { 
        display.getRenderer().clearBuffers(); 
        display.getRenderer().draw(rootNode); 
    } 
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    protected final void initSystem() { 
      display = DisplaySystem.getDisplaySystem(properties.getRenderer()); 
      display.createWindow(...); 
      camera = display.getRenderer().createCamera(...); 
      camera.setFrustumPerspective(...); 
      camera.setFrame(...); 
      camera.update(); 
      display.getRenderer().setCamera(camera); 
      // setup input controls 
      input = new FirstPersonHandler(camera); 
    } 

    protected final void initGame() { 
      rootNode = new Node("rootNode"); 
      // create ZBuffer 
      ZBufferState buf = display.getRenderer().createZBufferState(); 
      buf.setEnabled(true); 
      buf.setFunction(ZBufferState.CF_LEQUAL); 
      rootNode.setRenderState(buf); 
      // set up basic default light 
      PointLight light = new PointLight(); 
      light.setDiffuse(new ColorRGBA(1.0f, 1.0f, 1.0f, 1.0f)); 
      light.setAmbient(new ColorRGBA(0.5f, 0.5f, 0.5f, 1.0f)); 
      light.setLocation(new Vector3f(100, 100, 100)); 
      light.setEnabled(true); 
      // attach light to a lightState and the lightState to rootNode 
      lightState = display.getRenderer().createLightState(); 
      lightState.setEnabled(true); 
      lightState.attach(light); 
      rootNode.setRenderState(lightState); 
      // attach example box to root node 
      rootNode.attachChild(new Box("my box",new Vector3f(0,0,0),new Vector3f(1,1,1))); 
      // update geometric and rendering information 
      rootNode.updateGeometricState(0.0f, true); 
      rootNode.updateRenderState(); 
    } 
} 

23 IMGD 4000 (D 10) 
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Some Observations from Code Tour 

  Code is overall more similar than different 
•  systematic separation of node vs. state (to allow 

reuse of state desriptions) 
– C4: Light/LightObject, etc. 
–  jME: Light/LightState, etc. 

•  controllers associated with nodes for response to 
events 
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Some Observations from Code Tour 

  Examples of how C4 more bundled, IDE-like: 
•  C4 makes heavier use of singleton “managers” 

– C4 has single root node in WorldManager 
–  any jME program can call updateGeometricState on any 

node 

•  World editor more tightly integrated 
–  “markers” installed in world editor and searched for by 

game initialization 
–  level editor not bundled into jME (cf. MonkeyWorld3D) 
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Detailed Feature Comparisons 

  From DevMaster.net 

  Caveats: 

•  Info may not be up-to-date (especially for jME) 

•  I have added a few comments of my own 

•  Let’s not get bogged down in the details---the idea 

is to get overall sense of emphasis 
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General Features 

Object-Oriented Design, Plug-in Architecture, Save/Load System:	


•  Extremely clean class hierarchy for scene graph nodes, including geometries,  cameras,             
lights, sounds, zones, portals, triggers, markers, and special effects	


•  General state serialization support for saving worlds	


•  Quick save and quick load capabilities	


•  Separation between per-instance and shared data	


•  External scene graph referencing from within another scene graph	


•  Support for pack files and a virtual directory hierarchy	


•  Skinable GUI's	



Modular OO based design with abstract interfaces for all low level APIs:	


• 3D Text Generation	


• Binding system for input controls	


• Support for using jME in a Java Applet	


• New Importer and Exporter System giving a standard framework for loading and saving jME       
scenegraphs	


• A Binary Format implementation for the new import/export system that is more compact and    
faster than standard Java serialization	


• Control Binding Management	
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Scripting 

Graphical script editor	



Efforts underway to add scripting extensions:	


 • Current JVM’s include JavaScript and LiveConnect (easy api between Java and JS)	


    [CR]	
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Builtin-Editors 

• Full-featured integrated cross-platform world editor	


• Interface panel editor	


• Complete built-in windowing system	


• Powerful and intuitive interface design	


• Advanced surface attribute manipulation and material management	



	

 	

	



Level editor considered separate project:	


• e.g., MonkeyWorld3D   	


   [CR]	
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Physics 

Basic Physics, Collision Detection, Rigid Body:	


• Built-in character controller.	


• Built-in projectile controller.	


• Real-time fluid surface simulation.	


• Real-time cloth simulation.	



Collision Detection:	


• Triangle accurate collision detection	



Physics considered separate project:	


• e.g., jME Physics interface to ODE (Open Dynamics Engine), PhysX and others	


   [CR]	
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Lighting 

Per-vertex, Per-pixel, Lightmapping, Radiosity, Gloss maps, Anisotropic:	


• Support for fully dynamic infinite, point, and spot lights	


• Gloss-mapped specular reflections	


• Ambient radiosity	


• Projected cube and spot textures	


• Cook-Torrance microfacet shading	



Per-vertex, Lightmapping	
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Shadows 

Shadow Mapping, Projected planar, Shadow Volume:	


• All shadows are rendered in real time at global scale	


• Three types of shadows are seamlessly combined in one world	


• True penumbral soft shadows for area light sources	



Shadow Volume:	


• Z-Pass shadow volumes	
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Texturing 

Basic, Multi-texturing, Bumpmapping, Mipmapping, Projected:	


• Comprehensive bump mapping capabilities	


• Enhanced parallax mapping	


• Ambient occlusion channels	


• Emission/glow maps	


• Horizon mapping	


• Realistic water shading	



Basic, Multi-texturing, Mipmapping, Procedural:	


• Support for simple texture based dot3 bump mapping	
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Shaders 

Vertex, Pixel, High Level:	


• Extensive support for vertex programs and pixel shaders	



Vertex, Pixel, High Level:	


• Support for OpenGL Vertex Programs.	


• Support for OpenGL Fragment Programs	


• Support for GLSL (cf. lecture on Thu, April 1)	
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Scene Management 

General, Portals, Occlusion Culling, LOD:	


• Efficient large-scale visibility determination	


• Advanced inter-zone lighting analysis at runtime	


• Special support for mirrors and remote portals	


• Object instancing and external scene referencing	


• Scene data can be imported from Collada format	



 General, Octrees, LOD:	


• Scene graph based architecture	


• Scene data can be imported from Collada format	
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Animation 

Skeletal Animation, Animation Blending:	


• Full skeletal hierarchy support for deformable meshes	


• Powerful hierarchical animation blending system	



Keyframe Animation, Skeletal Animation:	


• A Skin and Animatable Bone System enabling realistic representation of models and motion	
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Meshes 

Mesh Loading, Progressive:	


• Support for the Collada scene format, enabling models to be imported from 3D Studio MAX,     
Maya, XSI, Blender, and other content creation packages	



Mesh Loading, Skinning:	


• Handles it's internal format (.jme) and converts from/exports to ASE, 3DS, MD2, MD3,	


   Milkshape, Obj and Collada	


• Support for importing files in the COLLADA format	


• New extension providing the ability to generate 3d meshes from text	
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Special Effects 

Environment Mapping, Lens Flares, Billboarding, Particle System, Motion Blur, Sky, Water, 
Fire, Decals, Fog, Mirror:	


• Cube environment mapping	


• Environment-mapped bump mapping	


• Fully extensible particle systems	


• Surface markings on arbitrary geometry	


• Bump-mapped (fully lit) surface markings	


• Real-time fire and electrical effects	


• Transparent warping effects (heat haze, etc.)	


• Bumpy reflection and refraction	


• Postprocessed glow	


• Fog volumes	


• Full-scene cinematic motion blur	


• Interactive in-game interface panels	



Environment Mapping, Lens Flares, Billboarding, Particle System, Sky, Water, Fire, Explosion, 
Fog:	


• Cloth Simulation	


• Water, with configurable reflection, refraction, wave generation and more	


• Bloom, with configurable intensity, blurring, resolution and more-Dot3 Bumpmapping	
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Networking  

Client-Server:	


• Fast, reliable network implementation using UDP/IP	


• Solid fault tolerance and hacker resistance	


• Advanced security measures, including packet encryption	


• Automatic message distribution to entity controllers	



Networking viewed as separate project:	


• e.g., see JavaGameNetworking, Darkstar  	


  [CR]	
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Sound and Video 

2D Sound, 3D Sound, Streaming Sound:	


• Fully spatialized 3D sound effects	


• Unlimited streaming music channels with seamless looping and concatenation	


• Doppler shift and other frequency effects	


• High-precision sound travel delay	


• Atmospheric absorption effects	


• Reverberation with multiple simultaneous environments	


• Directional sounds with cone attenuation	


• Obstruction attenuation applied to direct and reflected paths	


• Frequency-dependent volume settings for all effects	


• Permeation system determines how far sounds travel through interiors	


• Apple's QuickTime technology can be used to play movies or soundtracks from         
numerous formats	



3D Sound:	


• OpenAL support with 3D position 	
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Rendering 

Fixed-function, Render-to-Texture:	


• Antialiasing (up to 8x)	


• Bilinear and trilinear filtration	


• Anisotropic filtration (up to 16x)	


• Vertical Sync control	



Fixed-function, Render-to-Texture, Fonts, GUI:	


• Rendering system supports both rendering to a screen context as well as rendering to a texture.	


• Implements a Rendering Queue that automatically sorts opaque, transparent and screen objects    
and renders them in the correct order	


• Multipass rendering system	


• Supports rendering into a web-page via applets	


• FBO support	


• Support for rendering to Framebuffer Objects	



IMGD 4000 (D 10) 42 

Summary Ratings (5 star scale) 

Overall: 	

 	

4.5 	

 (56 votes)	


Features: 	

 	

4.5	


Ease of Use: 	

4.0	


Stability: 	

 	

4.5	


Support: 	

 	

4.5	



Overall: 	

 	

4.0 	

(30 votes)	


Features: 	

 	

4.0	


Ease of Use: 	

4.0	


Stability: 	

 	

4.0	


Support: 	

 	

4.5	
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