
1

Minimax Search

Reference: Millington, Section 8.2

1

Technical Game Development II

Professor Charles Rich
Computer Science Department
rich@wpi.edu

IMGD 4000 (D 09) 2

Minimax Search

  Minimax is at the heart of almost every
computer board game

  Applies to games where:
•  Players take turns
•  Have perfect information

– Chess, Checkers, Tactics

  But can work for games without perfect
information or with chance
•  Poker, Monopoly, Dice

  Can work in real-time (i.e., not turn based) with
timer (iterative deepening, later)

2

IMGD 4000 (D 09) 3

The Game Tree

e.g,. Tic-Tac-Toe

Note: -just showing top part of tree
 -symmetrical positions removed (optimization example)

IMGD 4000 (D 09) 4

The Game Tree

  Nodes in tree represent states
•  e.g., board configurations, “positions”

  Arcs are decisions that take you to a next state
•  e.g., “moves”

  Technically a directed acyclic graph
•  may have joins but no cycles

  Levels called plies (plural of ply)
•  players alternate levels (or rotate among >2 players)

Level 0 (First Player)

Level 1 (Second Player)

Level 2 (First Player)

3

IMGD 4000 (D 09) 5

Naive Approach

1.  Exhaustively expand tree
•  naive because tree may be too big
•  e.g., chess

–  typical board position has ~35 legal moves
–  for 40 move game, 3540 > number atoms in universe

2.  Choose next move on a path that leads to
your winning
•  assumes your opponent is going to cooperate

and “let” you win
•  on his turn, he most likely will choose the worst

case for you!

IMGD 4000 (D 09) 6

Minimax Approach

  assume both/all players play to the best of their
ability

  define a scoring method (see next)
  from the standpoint of a given player (let’s call

him “Max”):
•  choose move which takes you to the next state with

highest expected score (from your point of view)
•  assuming the other player (let’s call her “Min-nie”) will

on her move choose the next state with the lowest
score (from your point of view)

4

IMGD 4000 (D 09) 7

(Static) Evaluation Function

  assigns score to given state from point of
view of given player
•  scores typically integers in centered range

–  e.g., [-100,+100] for TTT
–  e.g., [-1000,+1000] for chess

•  extreme values reserved for win/lose
–  this is typically the easy case to evaluate
–  e.g., for first player in TTT, return +100 if board has three

X’s in a row or -100 if three O’s in a row
–  e.g., checkmate for chess

•  what about non-terminal states?

IMGD 4000 (D 09) 8

(Static) Evaluation Function

  much harder to score in middle of the game
  score should reflect “likelihood” a player will win from

given state (board position)
  but balance of winning/losing isn’t always clear (e.g.,

number/value of pieces, etc.)
•  e.g., in Reversi, best strategy is to have fewest counters in

middle of game (better board control)
•  generic “local maxima” problem with all “hill climbing” search

methods

  static evaluation function is where (most) game-
specific knowledge resides

5

IMGD 4000 (D 09) 9

Naive Approach

1.  Apply static evaluation to each next state
2.  Choose move to highest scoring state

If static evaluation function were perfect, then
this is all you need to do
•  perfect static evaluator almost never exists
•  using this approach with imperfect evaluator

performs very badly
The solution? Look ahead!

IMGD 4000 (D 09) 10

Minimax Looking Ahead

  It’s Max’s turn at the start of the game (root of the tree)
  There is only time to expand tree to 2nd ply
  Max’s static evaluation function has been applied to all leaf states
  Max would “like” to get to the 9 point state
  But if Max chooses leftmost branch, Min will choose her move to get to 3

=> left branch has a value of 3

5

3 4 5

3 9 4 6 7 5

Max

Min

Max

  If Max chooses rightmost branch, Min can choose any one of 5, 6 or 7
 (will choose 5, the minimum)

=> right branch has a value of 5
  Right branch is largest (the maximum) so choose that move

6

IMGD 4000 (D 09) 11

Minimax “Bubbling Up Values”

  Max’s turn (root of tree)
  Circles represent Max’s turn, Squares represent Min’s turn
  Values in leaves are result of applying static evaluation function
  Red arrows represent best (local) move for each player
  Blue arrow is Max’s chosen move on this turn

IMGD 4000 (D 09) 12

Minimax Algorithm
def MinMax (board, player, depth, maxDepth)
 if (board.isGameOver() or depth == maxDepth)
 return board.evaluate(player), null

 bestMove = null
 if (board.currentPlayer() == player)
 bestScore = -INFINITY
 else bestScore = +INFINITY

 for move in board.getMoves()
 newBoard = board.makeMove(move)
 score = MinMax(newBoard, player, depth+1, maxDepth)
 if (board.currentPlayer() == player)
 if (score > bestScore) # max
 bestScore = score
 bestMove = move
 else
 if (score < bestScore) # min
 bestScore = score
 bestMove = move

 return bestScore, bestMove

MinMax(board, player, 0, maxDepth)

Note: makeMove returns copy of board
(can also move/unmove--but don’t execute graphics!)

Note: test works for multiplayer
 case also

7

IMGD 4000 (D 09) 13

Negamax Version

  for common case of
•  two player
•  zero sum

  single static evaluation function
•  returns + or - same value for given board position,

depending on player

IMGD 4000 (D 09) 14

Negamax Algorithm

def NegaMax (board, depth, maxDepth)

 if (board.isGameOver() or depth == maxDepth)
 return board.evaluate(), null

 bestMove = null
 bestScore = -INFINITY

 for move in board.getMoves()
 newBoard = board.makeMove(move)
 score = NegaMax(newBoard, depth+1, maxDepth)
 score = -score # alternates players
 if (score > bestScore)
 bestScore = score
 bestMove = move

 return bestScore, bestMove

NegaMax(board, 0, maxDepth)

8

IMGD 4000 (D 09) 15

Pruning Approach
  Minimax searches entire tree, even if in some cases it is clear that

parts of the tree can be ignored (pruned)
  Example:

•  You won a bet with your enemy.
•  He owes you one thing from a collection of bags.
•  You get to choose the bag, but your enemy chooses the thing.
•  Go through the bags one item at a time.

–  First bag: Red Sox tickets, sandwich, $20
–  He’ll choose sandwich
–  Second bag: Dead fish, …
–  He’ll choose fish.
–  Doesn’t matter what the rest of the items in this bag are ($500, Yankee’s

tickets …)
–  No point in looking further in this bag, since enemy’s dead fish is already

worse than sandwich

IMGD 4000 (D 09) 16

Pruning Approach

  In general,

  Stop processing branches at a node when you find a
branch worse than result you already know you can
achieve

  This type of pruning saves processing time without
affecting final result
•  i.e., not a “heuristic” like the evaluation function in A*

9

IMGD 4000 (D 09) 17

Pruning Example

•  From Max’s point of view, 1 is already lower than 5, which he
knows he can achieve, so there is no need to look farther at
sibling branches

•  Note that there might be large subtrees below nodes labeled
2 and 3 (only showing the top part of tree)

IMGD 4000 (D 09) 18

Alpha-Beta Pruning

  Keep track of two scores:
•  Alpha – best score by any means

–  Anything less than this is no use (can be pruned) since we can
already get alpha

–  Minimum score Max will get
–  Initially, negative infinity

•  Beta – worst-case scenario for opponent
–  Anything higher than this won’t be used by opponent
–  Maximum score Min will get
–  Initially, infinity

  As recursion progresses, the "window" of Alpha-Beta
becomes smaller
•  (Beta < Alpha) => current position not result of best play and

can be pruned

10

IMGD 4000 (D 09) 19

Alpha-Beta NegaMax Algorithm
def ABNegaMax (board, depth, maxDepth, alpha, beta)

 if (board.isGameOver() or depth == maxDepth)
 return board.evaluate(), null

 bestMove = null
 bestScore = -INFINITY

 for move in board.getMoves()
 newBoard = board.makeMove(move)
 score = ABNegaMax(newBoard, maxDepth, depth+1,
 -beta,
 -max(alpha, bestScore))
 score = -score
 if (score > bestScore)
 bestScore = score
 bestMove = move

 # early loop exit (pruning)
 if (bestScore >= beta) return bestScore, bestMove

 return bestScore, bestMove

ABNegaMax(board, player, maxDepth, 0, -INFINITY, INFINITY)

IMGD 4000 (D 09) 20

Move Order

  Benefits of pruning depend heavily on order in which
branches (moves) are visited
•  for example, if branches visited right to left above no pruning

happens!
•  for chess, on average, pruning reduces 35 branches -> 6

–  allows search twice as deep!

11

IMGD 4000 (D 09) 21

Move Order

  Can we improve branch (move) order?
•  apply static evaluation function at intermediate

nodes and check best first
–  logical idea
–  can improve pruning
–  but may effectively give up depth of search advantage (in

fixed time interval) due to high cost of function evalution

•  better idea: use results of previous minimax
searches

–  “negascout” algorithm (extra credit, see Millington 8.2.7)

IMGD 4000 (D 09) 22

Chess Notes

  Static evaluation function
•  typically use weighted function

–  c1*material + c2*mobility + c3*kingSafety + ...

•  simplest is point value for material
–  pawn 1, knight 3, bishop 3, castle 3, queen 9

•  see references in homework instructions
•  checkmate is worth more than rest combined
•  what about a draw (stalemate)?

–  can be good (e.g., if opponent strong)
–  can be bad (e.g., if opponent weak)
–  adjust with “contempt factor” (above or below zero)

12

IMGD 4000 (D 09) 23

Chess Notes

  Chess has many forced tactical situations
•  e.g., “exchanges” of pieces
•  minimax may not find these
•  add cheap test at start of turn to check for

immediate captures
  Library of openings and/or closings
  Use iterative deepening

•  search 1-ply deep, check time, search 2nd ply,
check time, etc.

