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Next Basic AI Technique: 

Scripting 

References:  Buckland, Chapter 6 

                     CACM, 52(3), “Better Scripts, Better Games” 
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Scripting 

  Two senses of the word 
•  “scripted behavior” 

–  having agents follow pre-set actions 
–  rather than choosing them dynamically 

•  “scripting language” 
–  using a dynamic language 
–  to make the game easier to modify  

  The senses are related 
•  a scripting language is good for writing scripted 

behaviors (among other things) 
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Scripted Behavior  

  One way of building AI behavior 

  What’s the other way? 

  Versus simulation-based behavior 

•  e.g., goal/behavior trees 

•  genetic algorithms 

•  machine learning 

•  etc. 

Scripted vs. Simulation-Based AI Behavior 

  Example of scripted AI behavior 
•  fixed trigger regions 

– when player/enemy enters predefined area 

–  send pre-specified waiting units to attach 

•  doesn’t truly simulate scouting and preparedness  

•  player can easily defeat AI once she figures it out 
– mass outnumbering force just outside trigger area 

–  attack all at once 
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Scripted vs. Simulation-Based AI Behavior 

  Non-scripted (“simulation-based”) version 
•  send out patrols 

•  use reconnaissance information to influence unit 
allocation 

•  adapts to player’s behavior (e.g., massing of 
forces) 

•  can even vary patrol depth depending on stage of 
the game 
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Advantages of Scripted AI Behavior 

  Much faster to execute 
•  apply a simple rule, rather than run a complex 

simulation 

  Easier to write, understand and modify 
•  than a sophisticated simulation 
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Disadvantages of Scripted AI Behavior 

  Limits player creativity 
•  players will try things that “should” work (based on 

their own real-world intuitions) 
•  will be disappointed when they don’t 

  Allows degenerate strategies 
•  players will learn the limits of the scripts 
•  and exploit them 

  Games will need many scripts 
•  predicting their interactions can be difficult 
•  complex debugging problem 
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Stage Direction Scripts 

  Controlling camera movement and “bit players” 
–  create a guard at castle drawbridge 
–  lock camera on guard 
– move guard toward player 
–  etc. 

  Better application of scripted behavior than AI 
•  doesn’t limit player creativity as much 
•  improves visual experience 

  Stage direction also be done by sophisticated 
simulation 
•  e.g., camera system in God of War 

IMGD 400X (B 09) 8 



5 

IMGD 400X (B 09) 9 

Scripting Languages   

You can probably name a bunch of them: 

  custom languages tied to specific games/engines 
•  UnrealScript, QuakeC, HaloScript, LSL, ... 

  general purpose languages 
•  Tcl, Python, Perl, Javascript, Ruby, Lua, ... 
•  the “modern” trend, especially with Lua 

Often (mostly) used to write scripted (AI) behaviors. 
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Custom Languages and Tools 

“Designer UI” from Halo 3 
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Custom Scripting Languages 

  A custom scripting language tied to a specific game, 
which is just idiosyncratically “different” (e.g., 
QuakeC) doesn’t have much to recommend it 

  However, a game-specific scripting language that is 
truly natural for non-programmers can be very 
effective: 

 if enemy health < 500 && enemy distance < our bigrange 
        move ... 
        fire ... 
    else 
        ... 
    return 

(GalaxyHack) 
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General Purpose Scripting Languages 

What makes a general purpose scripting language 
different from any other programming language? 

  interpreted (byte code, virtual machine) 
•  faster development cycle 
•  safely executable in “sandbox” 

  simpler syntax/semantics: 
•  untyped 
•  garbage-collected 
•  builtin associative data structures 

  plays well with other languages 
•  e.g., LiveConnect, .NET, Lua stack 
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General Purpose Scripting Languages   

But when all is said and done, it looks pretty 
much like “code” to me.... 

e.g. Lua 

function factorial(n) 
   if n == 0 then 
     return 1 
   end 
   return n * factorial(n - 1)  
end 
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Scripting Languages in Games 

So it must be about something else... 
Namely, the game development process: 

  For the technical staff 
•  data-driven design (scripts viewed as data, not 

part of codebase) 
•  script changes do not require game recompilation 

  For the non-technical staff  
•  allows parallel development by designers 
•  allows end-user extension 
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A Divide-and-Conquer Strategy 

  implement part of the game in C++ 
•  the time-critical inner loops 

•  code you don’t change very often 

•  requires complete (long) rebuild for each change 

  and part in a scripting language 
•  don’t have to rebuild C++ part when change scripts 

•  code you want to evolve quickly (e.g, AI behaviors) 

•  code you want to share (with designers, players) 

•  code that is not time-critical (can migrate to C++) 
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General Purpose Scripting Languages   

But to make this work, you need to successfully 
address a number of issues: 

  Where to put boundaries (APIs) between 
scripted and “hard-coded” parts of game 

  Performance 
  Flexible and powerful debugging tools 

•  even more necessary than with some conventional 
(e.g., typed) languages 

  Is it really easy enough to use for designers!? 
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Lua in Games 

  Has come to dominate other choices 
•  Powerful and fast 

•  Lightweight and simple 

•  Portable and free 

  Currently Lua 5.1 

  See http://lua.org 
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Lua in Games 

    * Aleph One (an open-source enhancement of Marathon 2: Durandal) supports Lua, and it's 
been used in a number of scenarios (including Excalibur and Eternal). 

    * Blobby Volley, in which bots are written in Lua. 
    * Company of Heroes, a WW2 RTS. Lua is used for the console, AI, single player scripting, 

win condition scripting and for storing unit attributes and configuration information. 
    * Crysis, a first-person shooter & spiritual successor to Far Cry. 
    * Dawn of War, uses Lua throughout the game. 
    * Destroy All Humans! and Destroy All Humans! 2 both use Lua. 
    * Escape from Monkey Island is coded in Lua instead of the SCUMM engine of the older titles. 

The historic "SCUMM Bar" is renovated and renamed to the "Lua Bar" as a reference. 
    * Far Cry, a first-person shooter. Lua is used to script a substantial chunk of the game logic, 

manage game objects' (Entity system), configure the HUD and store other configuration 
information. 

    * Garry's Mod and Fortress Forever, mods for Half-Life 2, use Lua scripting for tools and other 
sorts of things for full customization. 

    * Grim Fandango and Escape from Monkey Island, both based on the GrimE engine, are two 
of the first games which used Lua for significant purposes. 

per Wikipedia 
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Lua in Games (cont’d) 

    * Gusanos (Version 0.9) supports Lua Scripting for making the whole game modable. 
    * Homeworld 2 uses Lua scripting for in-game levels, AI, and as a Rules Engine for game 

logic. 
    * Incredible Hulk: Ultimate Destruction uses Lua for all mission scripting 
    * JKALua, A game modification for the game JK3: Jedi Academy. 
    * Multi Theft Auto, a multi-player modification for the Grand Theft Auto video game series. The 

recent adaptation for the game Grand Theft Auto San Andreas uses Lua. 
    * Painkiller 
    * Ragnarok Online recently had a Lua implementation, allowing players to fully customize the 

artificial intelligence of their homunculus to their liking, provided that they have an Alchemist 
to summon one. 

    * ROBLOX is an online Lego-like building game that uses Lua for all in-game scripting. 
    * SimCity 4 uses Lua for some in-game scripts. 
    * Singles: Flirt Up Your Life uses Lua for in-game scripts and object/character behavior. 
    * Spring (computer game) is an advanced open-source RTS engine, which is able to use Lua 

for many things, including unit/mission scripting, AI writing as well as interface changes. 
    * S.T.A.L.K.E.R.: Shadow of Chernobyl 
    * Star Wars: Battlefront and Star Wars: Battlefront 2 both use Lua. 
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Lua in Games (cont’d) 

    * Star Wars: Empire at War uses Lua. 
    * Supreme Commander allows you to edit almost all its aspects with Lua. 
    * Toribash, a turn-based fighting game, supports Lua scripting. 
    * Vendetta Online, a science fiction MMORPG, lets users use Lua to customize the user 

interface, as well as create new commands and react to events triggered by the game. 
    * Warhammer Online uses Lua. 
    * The Witcher. 
    * World of Warcraft, a fantasy MMORPG. Lua is used to allow users to customize its user 

interface. 
    * Xmoto, a free and open source 2D motocross platform game, supports Lua scripting in 

levels. 
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Lua Language Data Types 

  Nil – singleton default value, nil 

  Number – internally double (no int’s!) 

  String – array of 8-bit characters 

  Boolean – true, false 
Note: everything except nil coerced to false!, e.g., “”, 0 

  Function – unnamed objects 

  Table – key/value mapping (any mix of types) 

  UserData – opaque wrapper for other languages 

  Thread – multi-threaded programming (reentrant code) 
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Lua Variables and Assignment 

  Untyped:  any variable can hold any type of 
value at any time 

A = 3; 
A = “hello”; 

  Multiple values 
•  in assignment statements 

     A, B, C = 1, 2, 3; 
•  multiple return values from functions 
       A, B, C = foo(); 
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“Promiscuous” Syntax and Semantics 

  Optional semi-colons and parens 
  A = 10; B = 20; 
  A = 10  B = 20 

       A = foo(); 
       A = foo 

  Ignores too few or too many values 
 A, B, C, D =  1, 2, 3 
 A, B, C  = 1, 2, 3, 4 

  Can lead to a debugging nightmare! 

  Moral:  Only use for small procedures 
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Lua Operators 

  arithmetic:  +  -   *   /  ^ 

  relational:  <   >  <=  >=  ==  ~= 
  logical:  and  or  not 
  concatenation:  .. 

... with usual precedence 
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Lua Tables 

  heterogeneous associative mappings 
  used a lot 
  standard array-ish syntax 

•  except any object (not just int) can be “index” (key) 
mytable[17] = “hello”; 
mytable[“chuck”] = false; 

•  curly-bracket constructor 
mytable = { 17 = “hello”, “chuck” = false }; 

•  default integer index constructor (starts at 1) 
test_table = { 12, “goodbye”, true }; 
test_table = { 1 = 12, 2 = “goodbye”, 3 = true }; 
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Lua Control Structures 

  Standard if-then-else, while, repeat and for 
•  with break in looping constructs 

  Special for-in iterator for tables 
data = { a=1, b=2, c=3 }; 
for k,v in data do print(k,v) end; 

produces, e.g.,  
a   1 
c   3 
b   2 

(order undefined) 
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Lua Functions 

  standard parameter and return value syntax 
  function (a, b) 

          return a+b 

      end 

  inherently unnamed, but can assign to variables 
   foo = function (a, b) return a+b; end 

     foo(3, 5)   8 

  convenience syntax 
function foo (a, b) return a+b; end 
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Lua Features not Covered 

  object-oriented style (alternative dot/colon syntax) 

  local variables (default global) 

  libraries (sorting, matching, etc.) 

  namespace management (using tables) 

  multi-threading (thread type) 

  compilation (bytecode, virtual machine) 

  features primarily used for language extension 
•  metatables and metamethods  

•  fallbacks 

See http://www.lua.org/manual/5.1 
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Connecting Lua and C++  

  Accessing Lua from C++ 
  Accessing C++ from Lua 

See more details and examples in  
            Buckland, Ch 6. 
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C Lua 

Connecting Lua and C++  

  Lua virtual stack 
•  bidirectional API/buffer between two environments 
•  preserves garbage collection safety 

  data wrappers 
•  UserData –  Lua wrapper for C data 
•  luabind::object – C wrapper for Lua data 
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C Lua 
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Lua Virtual Stack 

  both C and Lua env’ts 
can put items on and 
take items off stack 

  push/pop or direct 
indexing 

  positive or negative 
indices 

  current top index 
(usually 0) 
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lua-settop 

0 

C Lua 

Accessing Lua from C 

IMGD 400X (B 09) 32 

C Lua 
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Accessing Lua Global Variables from C 

  C tells Lua to push global value onto stack 
  lua_getglobal(pLua, “foo”); 

  C retrieves value from stack 
•  using appropriate function for expected type 
          string s = lua_tostring(pLua, 1); 
•  or can check for type 

     if ( lua_isnumber(pLua, 1) )  
        { int n = (int) lua_tonumber(pLua, 1) } ... 

  C clears value from stack 
        lua_pop(pLua, 1); 
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C Lua 

Accessing Lua Tables from C (w. LuaBind) 

  C asks Lua for global values table 
  luabind::object global_table = globals(pLua); 

  C accesses global table using overloaded [ ] syntax 
  luabind::object tab = global_table[“mytable”]; 

  C accesses any table using overloaded [ ] syntax and 
casting   
int val = luabind::object_cast<int>(tab[“key”]); 

tab[17] = “shazzam”; 
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C Lua 
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Calling Lua Functions from C (w. LuaBind) 

  C asks Lua for global values table 
  luabind::object global_table = globals(pLua); 

  C accesses global table using overloaded [ ] syntax 
  luabind::object func = global_table[“myfunc”]; 

  C calls function using overloaded ( ) syntax 
int val =  
     luabind::object_cast<int>(func(2, “hello”)); 
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C Lua 

Accessing C from Lua 
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C Lua 
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Calling C Function from Lua (w. LuaBind) 

  C “exposes” function to Lua 

    void MyFunc (int a, int b) { ... } 
 module(pLua) [  

          def(“MyFunc”, &MyFunc)  
    ]; 

  Lua calls function normally in scripts 

 MyFunc(3, 4); 
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C Lua 

Using C Classes in Lua (w. LuaBind) 

  C “exposes” class to Lua 

  class Animal { ... 
         public:   
               Animal (string ..., int ...) ... { } 
               int NumLegs () { ... } } 

     module (pLua) [ class <Animal>(“Animal”) 
              .def(constructor<string, int>()) 
              .def(“NumLegs”, &Animal::NumLegs) ]; 

  Lua calls constructor and methods 
    cat = Animal(“meow”, 4);  print(cat:NumLegs()) 
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C Lua 
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JavaScript 

  Technically called “ECMAScript”, according to 
the ECMA-262 standard 

  General purpose scripting language 
•  very similar syntax/semantics to Lua 
•  originally developed to run in web browsers 
•  included in standard Java JRE since Java 6 
•  very easy connection to Java via LiveConnect 

See details in O’Reilly, JavaScript—The Definitive Guide 
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Accessing JavaScript from Java 

  javax.script.ScriptEngine.eval(String) 
•  give it any JavaScript expression or statement 

–  global variable 
–  table lookup 
–  function application 
–  etc. 

•  evaluates expression in current (persistent) state 
of ScriptEngine instance  

–  primitive data types automatically coerced 
– wrapper classes for other data 
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Accessing Java from JavaScript 

  All Java packages (and thus the classes and 
their methods) are directly accessible via 
Packages object 
e.g.,  

Packages.java.awt.Toolkit.getDefaultToolkit().beep() 
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Future Directions 

  It’s dangerous to put general purpose scripting 
languages into the hands of non-technical staff 
•  destructive access to game state 
•  performance degradation (e.g., infinite loops) 
•  buggy synchronization (no transaction support) 

  Solution: Design restricted, but generic 
languages that embody design patterns 
appropriate for games 
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White et al., “Better Scripts, Better Games”, CACM, 52(3), March 2009. 
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Game Scripting Patterns 

  Restricted Iteration Pattern 
•  remove general iteration, goto and recursion 
•  allow only “for each” iterations 

  Concurrency Patterns 
•  e.g., inventory management 
•  instead of lock-based synchronization 

  State-Effect Pattern 
•  main game loop has effects and update phases 
•  partition game object attributes into effect and state 

attributes (each only used in one phase) 
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