
1

Next Basic AI Technique:

Scripting

References: Buckland, Chapter 6

 CACM, 52(3), “Better Scripts, Better Games”

1 IMGD 400X (B 09)

Scripting

  Two senses of the word
•  “scripted behavior”

–  having agents follow pre-set actions
–  rather than choosing them dynamically

•  “scripting language”
–  using a dynamic language
–  to make the game easier to modify

  The senses are related
•  a scripting language is good for writing scripted

behaviors (among other things)

IMGD 400X (B 09) 2

2

IMGD 400X (B 09) 3

Scripted Behavior

  One way of building AI behavior

  What’s the other way?

  Versus simulation-based behavior

•  e.g., goal/behavior trees

•  genetic algorithms

•  machine learning

•  etc.

Scripted vs. Simulation-Based AI Behavior

  Example of scripted AI behavior
•  fixed trigger regions

– when player/enemy enters predefined area

–  send pre-specified waiting units to attach

•  doesn’t truly simulate scouting and preparedness

•  player can easily defeat AI once she figures it out
– mass outnumbering force just outside trigger area

–  attack all at once

IMGD 400X (B 09) 4

3

Scripted vs. Simulation-Based AI Behavior

  Non-scripted (“simulation-based”) version
•  send out patrols

•  use reconnaissance information to influence unit
allocation

•  adapts to player’s behavior (e.g., massing of
forces)

•  can even vary patrol depth depending on stage of
the game

IMGD 400X (B 09) 5

Advantages of Scripted AI Behavior

  Much faster to execute
•  apply a simple rule, rather than run a complex

simulation

  Easier to write, understand and modify
•  than a sophisticated simulation

IMGD 400X (B 09) 6

4

Disadvantages of Scripted AI Behavior

  Limits player creativity
•  players will try things that “should” work (based on

their own real-world intuitions)
•  will be disappointed when they don’t

  Allows degenerate strategies
•  players will learn the limits of the scripts
•  and exploit them

  Games will need many scripts
•  predicting their interactions can be difficult
•  complex debugging problem

IMGD 400X (B 09) 7

Stage Direction Scripts

  Controlling camera movement and “bit players”
–  create a guard at castle drawbridge
–  lock camera on guard
– move guard toward player
–  etc.

  Better application of scripted behavior than AI
•  doesn’t limit player creativity as much
•  improves visual experience

  Stage direction also be done by sophisticated
simulation
•  e.g., camera system in God of War

IMGD 400X (B 09) 8

5

IMGD 400X (B 09) 9

Scripting Languages

You can probably name a bunch of them:

  custom languages tied to specific games/engines
•  UnrealScript, QuakeC, HaloScript, LSL, ...

  general purpose languages
•  Tcl, Python, Perl, Javascript, Ruby, Lua, ...
•  the “modern” trend, especially with Lua

Often (mostly) used to write scripted (AI) behaviors.

IMGD 400X (B 09) 10

Custom Languages and Tools

“Designer UI” from Halo 3

6

IMGD 400X (B 09) 11

Custom Scripting Languages

  A custom scripting language tied to a specific game,
which is just idiosyncratically “different” (e.g.,
QuakeC) doesn’t have much to recommend it

  However, a game-specific scripting language that is
truly natural for non-programmers can be very
effective:

 if enemy health < 500 && enemy distance < our bigrange
 move ...
 fire ...
 else
 ...
 return

(GalaxyHack)

IMGD 400X (B 09) 12

General Purpose Scripting Languages

What makes a general purpose scripting language
different from any other programming language?

  interpreted (byte code, virtual machine)
•  faster development cycle
•  safely executable in “sandbox”

  simpler syntax/semantics:
•  untyped
•  garbage-collected
•  builtin associative data structures

  plays well with other languages
•  e.g., LiveConnect, .NET, Lua stack

7

IMGD 400X (B 09) 13

General Purpose Scripting Languages

But when all is said and done, it looks pretty
much like “code” to me....

e.g. Lua

function factorial(n)
 if n == 0 then
 return 1
 end
 return n * factorial(n - 1)
end

IMGD 400X (B 09) 14

Scripting Languages in Games

So it must be about something else...
Namely, the game development process:

  For the technical staff
•  data-driven design (scripts viewed as data, not

part of codebase)
•  script changes do not require game recompilation

  For the non-technical staff
•  allows parallel development by designers
•  allows end-user extension

8

A Divide-and-Conquer Strategy

  implement part of the game in C++
•  the time-critical inner loops

•  code you don’t change very often

•  requires complete (long) rebuild for each change

  and part in a scripting language
•  don’t have to rebuild C++ part when change scripts

•  code you want to evolve quickly (e.g, AI behaviors)

•  code you want to share (with designers, players)

•  code that is not time-critical (can migrate to C++)

IMGD 400X (B 09) 15

IMGD 400X (B 09) 16

General Purpose Scripting Languages

But to make this work, you need to successfully
address a number of issues:

  Where to put boundaries (APIs) between
scripted and “hard-coded” parts of game

  Performance
  Flexible and powerful debugging tools

•  even more necessary than with some conventional
(e.g., typed) languages

  Is it really easy enough to use for designers!?

9

Lua in Games

  Has come to dominate other choices
•  Powerful and fast

•  Lightweight and simple

•  Portable and free

  Currently Lua 5.1

  See http://lua.org

IMGD 400X (B 09) 17

IMGD 400X (B 09) 18

Lua in Games

 * Aleph One (an open-source enhancement of Marathon 2: Durandal) supports Lua, and it's
been used in a number of scenarios (including Excalibur and Eternal).

 * Blobby Volley, in which bots are written in Lua.
 * Company of Heroes, a WW2 RTS. Lua is used for the console, AI, single player scripting,

win condition scripting and for storing unit attributes and configuration information.
 * Crysis, a first-person shooter & spiritual successor to Far Cry.
 * Dawn of War, uses Lua throughout the game.
 * Destroy All Humans! and Destroy All Humans! 2 both use Lua.
 * Escape from Monkey Island is coded in Lua instead of the SCUMM engine of the older titles.

The historic "SCUMM Bar" is renovated and renamed to the "Lua Bar" as a reference.
 * Far Cry, a first-person shooter. Lua is used to script a substantial chunk of the game logic,

manage game objects' (Entity system), configure the HUD and store other configuration
information.

 * Garry's Mod and Fortress Forever, mods for Half-Life 2, use Lua scripting for tools and other
sorts of things for full customization.

 * Grim Fandango and Escape from Monkey Island, both based on the GrimE engine, are two
of the first games which used Lua for significant purposes.

per Wikipedia

10

IMGD 400X (B 09) 19

Lua in Games (cont’d)

 * Gusanos (Version 0.9) supports Lua Scripting for making the whole game modable.
 * Homeworld 2 uses Lua scripting for in-game levels, AI, and as a Rules Engine for game

logic.
 * Incredible Hulk: Ultimate Destruction uses Lua for all mission scripting
 * JKALua, A game modification for the game JK3: Jedi Academy.
 * Multi Theft Auto, a multi-player modification for the Grand Theft Auto video game series. The

recent adaptation for the game Grand Theft Auto San Andreas uses Lua.
 * Painkiller
 * Ragnarok Online recently had a Lua implementation, allowing players to fully customize the

artificial intelligence of their homunculus to their liking, provided that they have an Alchemist
to summon one.

 * ROBLOX is an online Lego-like building game that uses Lua for all in-game scripting.
 * SimCity 4 uses Lua for some in-game scripts.
 * Singles: Flirt Up Your Life uses Lua for in-game scripts and object/character behavior.
 * Spring (computer game) is an advanced open-source RTS engine, which is able to use Lua

for many things, including unit/mission scripting, AI writing as well as interface changes.
 * S.T.A.L.K.E.R.: Shadow of Chernobyl
 * Star Wars: Battlefront and Star Wars: Battlefront 2 both use Lua.

IMGD 400X (B 09) 20

Lua in Games (cont’d)

 * Star Wars: Empire at War uses Lua.
 * Supreme Commander allows you to edit almost all its aspects with Lua.
 * Toribash, a turn-based fighting game, supports Lua scripting.
 * Vendetta Online, a science fiction MMORPG, lets users use Lua to customize the user

interface, as well as create new commands and react to events triggered by the game.
 * Warhammer Online uses Lua.
 * The Witcher.
 * World of Warcraft, a fantasy MMORPG. Lua is used to allow users to customize its user

interface.
 * Xmoto, a free and open source 2D motocross platform game, supports Lua scripting in

levels.

11

Lua Language Data Types

  Nil – singleton default value, nil

  Number – internally double (no int’s!)

  String – array of 8-bit characters

  Boolean – true, false
Note: everything except nil coerced to false!, e.g., “”, 0

  Function – unnamed objects

  Table – key/value mapping (any mix of types)

  UserData – opaque wrapper for other languages

  Thread – multi-threaded programming (reentrant code)

IMGD 400X (B 09) 21

Lua Variables and Assignment

  Untyped: any variable can hold any type of
value at any time

A = 3;
A = “hello”;

  Multiple values
•  in assignment statements

 A, B, C = 1, 2, 3;
•  multiple return values from functions
 A, B, C = foo();

IMGD 400X (B 09) 22

12

“Promiscuous” Syntax and Semantics

  Optional semi-colons and parens
 A = 10; B = 20;
 A = 10 B = 20

 A = foo();
 A = foo

  Ignores too few or too many values
 A, B, C, D = 1, 2, 3
 A, B, C = 1, 2, 3, 4

  Can lead to a debugging nightmare!

  Moral: Only use for small procedures

IMGD 400X (B 09) 23

Lua Operators

  arithmetic: + - * / ^

  relational: < > <= >= == ~=
  logical: and or not
  concatenation: ..

... with usual precedence

IMGD 400X (B 09) 24

13

Lua Tables

  heterogeneous associative mappings
  used a lot
  standard array-ish syntax

•  except any object (not just int) can be “index” (key)
mytable[17] = “hello”;
mytable[“chuck”] = false;

•  curly-bracket constructor
mytable = { 17 = “hello”, “chuck” = false };

•  default integer index constructor (starts at 1)
test_table = { 12, “goodbye”, true };
test_table = { 1 = 12, 2 = “goodbye”, 3 = true };

IMGD 400X (B 09) 25

Lua Control Structures

  Standard if-then-else, while, repeat and for
•  with break in looping constructs

  Special for-in iterator for tables
data = { a=1, b=2, c=3 };
for k,v in data do print(k,v) end;

produces, e.g.,
a 1
c 3
b 2

(order undefined)

IMGD 400X (B 09) 26

14

Lua Functions

  standard parameter and return value syntax
 function (a, b)

 return a+b

 end

  inherently unnamed, but can assign to variables
 foo = function (a, b) return a+b; end

 foo(3, 5)  8

  convenience syntax
function foo (a, b) return a+b; end

IMGD 400X (B 09) 27

Lua Features not Covered

  object-oriented style (alternative dot/colon syntax)

  local variables (default global)

  libraries (sorting, matching, etc.)

  namespace management (using tables)

  multi-threading (thread type)

  compilation (bytecode, virtual machine)

  features primarily used for language extension
•  metatables and metamethods

•  fallbacks

See http://www.lua.org/manual/5.1

IMGD 400X (B 09) 28

15

Connecting Lua and C++

  Accessing Lua from C++
  Accessing C++ from Lua

See more details and examples in
 Buckland, Ch 6.

IMGD 400X (B 09) 29

C Lua

Connecting Lua and C++

  Lua virtual stack
•  bidirectional API/buffer between two environments
•  preserves garbage collection safety

  data wrappers
•  UserData – Lua wrapper for C data
•  luabind::object – C wrapper for Lua data

IMGD 400X (B 09) 30

C Lua

16

Lua Virtual Stack

  both C and Lua env’ts
can put items on and
take items off stack

  push/pop or direct
indexing

  positive or negative
indices

  current top index
(usually 0)

IMGD 400X (B 09) 31

lua-settop

0

C Lua

Accessing Lua from C

IMGD 400X (B 09) 32

C Lua

17

Accessing Lua Global Variables from C

  C tells Lua to push global value onto stack
 lua_getglobal(pLua, “foo”);

  C retrieves value from stack
•  using appropriate function for expected type
 string s = lua_tostring(pLua, 1);
•  or can check for type

 if (lua_isnumber(pLua, 1))
 { int n = (int) lua_tonumber(pLua, 1) } ...

  C clears value from stack
 lua_pop(pLua, 1);

IMGD 400X (B 09) 33

C Lua

Accessing Lua Tables from C (w. LuaBind)

  C asks Lua for global values table
 luabind::object global_table = globals(pLua);

  C accesses global table using overloaded [] syntax
 luabind::object tab = global_table[“mytable”];

  C accesses any table using overloaded [] syntax and
casting
int val = luabind::object_cast<int>(tab[“key”]);

tab[17] = “shazzam”;

IMGD 400X (B 09) 34

C Lua

18

Calling Lua Functions from C (w. LuaBind)

  C asks Lua for global values table
 luabind::object global_table = globals(pLua);

  C accesses global table using overloaded [] syntax
 luabind::object func = global_table[“myfunc”];

  C calls function using overloaded () syntax
int val =
 luabind::object_cast<int>(func(2, “hello”));

IMGD 400X (B 09) 35

C Lua

Accessing C from Lua

IMGD 400X (B 09) 36

C Lua

19

Calling C Function from Lua (w. LuaBind)

  C “exposes” function to Lua

 void MyFunc (int a, int b) { ... }
 module(pLua) [

 def(“MyFunc”, &MyFunc)
];

  Lua calls function normally in scripts

 MyFunc(3, 4);

IMGD 400X (B 09) 37

C Lua

Using C Classes in Lua (w. LuaBind)

  C “exposes” class to Lua

 class Animal { ...
 public:
 Animal (string ..., int ...) ... { }
 int NumLegs () { ... } }

 module (pLua) [class <Animal>(“Animal”)
 .def(constructor<string, int>())
 .def(“NumLegs”, &Animal::NumLegs)];

  Lua calls constructor and methods
 cat = Animal(“meow”, 4); print(cat:NumLegs())

IMGD 400X (B 09) 38

C Lua

20

JavaScript

  Technically called “ECMAScript”, according to
the ECMA-262 standard

  General purpose scripting language
•  very similar syntax/semantics to Lua
•  originally developed to run in web browsers
•  included in standard Java JRE since Java 6
•  very easy connection to Java via LiveConnect

See details in O’Reilly, JavaScript—The Definitive Guide

IMGD 400X (B 09) 39

Accessing JavaScript from Java

  javax.script.ScriptEngine.eval(String)
•  give it any JavaScript expression or statement

–  global variable
–  table lookup
–  function application
–  etc.

•  evaluates expression in current (persistent) state
of ScriptEngine instance

–  primitive data types automatically coerced
– wrapper classes for other data

IMGD 400X (B 09) 40

21

Accessing Java from JavaScript

  All Java packages (and thus the classes and
their methods) are directly accessible via
Packages object
e.g.,

Packages.java.awt.Toolkit.getDefaultToolkit().beep()

IMGD 400X (B 09) 41

Future Directions

  It’s dangerous to put general purpose scripting
languages into the hands of non-technical staff
•  destructive access to game state
•  performance degradation (e.g., infinite loops)
•  buggy synchronization (no transaction support)

  Solution: Design restricted, but generic
languages that embody design patterns
appropriate for games

IMGD 400X (B 09) 42

White et al., “Better Scripts, Better Games”, CACM, 52(3), March 2009.

22

Game Scripting Patterns

  Restricted Iteration Pattern
•  remove general iteration, goto and recursion
•  allow only “for each” iterations

  Concurrency Patterns
•  e.g., inventory management
•  instead of lock-based synchronization

  State-Effect Pattern
•  main game loop has effects and update phases
•  partition game object attributes into effect and state

attributes (each only used in one phase)

IMGD 400X (B 09) 43

