
Massively multi-player
games and Project
Darkstar

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Who am I?

• Jeff Kesselman, Chief Instigator of Project
Darkstar, S un Microsystems Laboratories
> 15 years in games and multi-media before coming

to S un:
> American Interactive Media (Phillips)
> Crystal Dynamics
> Total Entertainment Network (TEN)

> 9 years at S un
> Win32 Java 1.3 Performance Tuning
> Initial leader of the JInput project
> 2 yrs in S un “Game Technologies Group”
> 2.5 years at S un Labs (Project Darkstar)

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Goals For The Week

This week we will cover:
• The History and S tructure of Multiplayer games
• The technical game-play challenges going

online brings
• How the Project Darkstar server is designed to

ease the impact of some of those challenges

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

What is Project Darkstar?

• Project Darkstar is a network application
container designed specifically for mainstream
online games.
> Project Darkstar customers are game developers.
> Project Darkstar applications are games or game-

like applications

• More details to follow...

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Lecture Map

Evolution of the
MMO

Comparative
architecture:

Traditional v. PD

Details of
Darkstar Coding
Do's and Don'ts

The Motivation for
Project Darkstar

The Project
Darkstar Coding

Model

Day 3: Project
Darkstar

Day 4: Project
Darkstar and

Chess

Day One: History
of Multiplayer

Day 2: MUDs,
MMOs and
Darkstar

Multi-player
Architectures

Evolution of the
Game

Chess : Des igning
a PD based server

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Topics Not Covered

• These lectures are intended to familiarize you
with the theory behind writing massively multi-
player games and the theory and design
behind the Project Darkstar server. They do
not cover:
> Installation and operations of a Project Darkstar

(PD) back-end.
> Language syntax and APIs
> For these and other specifics of coding PD based

games, see the PD tutorials included in the
downloads.

Unit One:

History of Multi-player

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

What this lecture is about

The Evolutionary History of the Architecture of
Online Massively Multi-player games

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Lecture Overview, Day One
• Day One, Lecture

> Evolution of Games
> Review: S ingle-player game structure
> Multi-player game structure
> MUDs and MMOs

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Where game architecture comes from

• Game software has DNA
> It carries the history of the industry within it
> In order to understand current games, you need to

understand the history

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Where game architecture comes from

• Game software has DNA
> It carries the history of the industry within it
> In order to understand current games, you need to

understand the history

• Game software usually evolves incrementally
> Game development is generally risk adverse
> Game development is on tight schedules
> Games general vary only in minor way from what

came before

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Where game architecture comes from

• Game software has DNA
> It carries the history of the industry within it
> In order to understand current games, you need to

understand the history

• Game software usually evolves incrementally
> Game development is generally risk adverse
> Game development is on tight schedules
> Games general vary only in minor way from what

came before

• Leaps happen rarely but occasionally
> Usually by 'cross-breeding' unrelated software

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Single Player Game Architecture

The Game Loop, A review

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Start at the beginning

• The primordial ooze of games
> BAS IC “guess the number”

10 N = INT(RND(1)*100 + 1)
20 PRINT “Guess a number between 1 and 100”
30 INPUT G
40 IF G = N GOTO 100
50 IF G < N GOTO 80
60 PRINT “Too high”
70 GOTO 20
80 PRINT “Too low”
90 GOTO 20
100 PRINT “You got it!”
110 END

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Contains all the “organs” of a modern
game

• “The Game Loop”
> Initialization

10 N = INT(RND(1)*100 + 1)
> Update/Render loop

20 PRINT “Guess a number between 1 and 100”
30 INPUT G
40 IF G = N GOTO 100
50 IF G < N GOTO 80
60 PRINT “Too high”
70 GOTO 20
80 PRINT “Too low”
90 GOTO 20
100 PRINT “You got it!”

> Intermingled because simple BAS IC isn't
structured

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

All games have a game loop

• Turn Based
> S top in Update to collect all input

• Example:
> Chess:

> Update:
– input chess move
– Run Artifical Intelligence (AI) to calculate response

> Render:
– Re-draw or animate chess board

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

All games have a game loop

• Real Time
> Poll inputs in Update and go on

• Example:
> First Person S hooter (FPS)

> Update:
– Every N frames (or time ticks)

● Read input keys
● Calculate player fire if any
● Run AI to calculate response
● Calculate Mobile Object (MOB) fire if any
● Move Player
● Move MOBs

> Render:
– Animate 1 frame (or N ticks) of gunfire and motion

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Differences Btw Turn based and Real time

• Turn based
> Blocking input
> One trip around the loop == 1 game turn

• Real Time
> Polled input
> One trip around the loop == fraction of game turn

• “Game Turn” above is defined as one read of
the controllers and the calculation and
animation of the response.

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Multi-player games

An evolutionary line

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Multi-Player, the next evolution

• Multiple Players on
one computer

• Turn Based
> Players each enter

their own move
sequentially in Update

• Real Time
> Each player has their

own set of keys or
input device

> All players are polled
in Update

In
pu

t

Single Computer

In
pu

t

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Multi-Station, the first networked games

• Played on LANs
• Non-local players are

on virtual devices
> Other players input

happens on foreign
machines

> Is communicated over
network

> Is processed in
Update at every
machine as if all input
was local

In
pu

t

Computer 1

In
pu

t

Computer 2Input

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Multi-Station, the first networked games

• The “lock-step”
model
> Every station is

running the same
game/simulation (sim)

> Works because on a
LAN, latency is
infinitesimal

In
pu

t

Computer 1

In
pu

t

Computer 2Input

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Flight Sims: Open Loop/Asynchronous
(Asynch)

• Based on work for
S imNet (DIS)
> Each system has its

own variant world
state

> Each vehicle is
simulated on one
machine
> Periodic time-stamped

state updates sent to
others

> Lower freq then
controller input

In
pu

t

Computer 1

In
pu

t

Computer 2Object
State

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Flight Sims: Open Loop/Asynch

• Dead Reckoning
> Each sim makes “best

guess” at non-local
positions

– Use vehicle model to
assist

● “Tanks don't fly”
> Corrects as updates

are received
> Note: Updates always

in past.
> Requires conflict

resolution mechanism
> “shooter decides”

In
pu

t

Computer 1

In
pu

t

Computer 2Object
State

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Stepping into Cyberspace

• First Internet capable games/techniques
• Kali

> NBIOS emulator over TCP/IP
> Lock step games tended to play badly

> Reducing packets per second helped
> Latency buffering helped

> Open loop/asynch tended to play well
> Already designed for limited bandwidth and real net

latencies

• TCP/IP support added to games
> Pluggable 'net drivers '
> More attention paid to latency and bandwidth issues

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Internet Play:
Lock Step Pros and Cons
• Pros ?

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Internet Play:
Lock Step Pros and Cons
• Pros

> Cheat proof
> Exact synchronization assured

• Cons ?

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Internet Play:
Lock Step Pros and Cons
• Pros

> Cheat proof
> Exact synchronization assured

• Cons
> Every player's experience limited by worst case
> Handles latency spikes poorly
> Handles dropped players poorly

> Needs to wait for timeout to determine drop v. spike

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Internet Play:
Open Loop/Asynch Pros and Cons
• Pros ?

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Internet Play:
Open Loop/Asynch Pros and Cons
• Pros

> Good at hiding latency
> S mooth predict/correct over many frames

> Better bandwidth control
> Can communicate less often

– 'shape' by distance
– Out of sight, out of mind

• Cons ?

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Internet Play:
Open Loop/Asynch Pros and Cons
• Pros

> Good at hiding latency
> S mooth predict/correct over many frames

> Better bandwidth control
> Can communicate less often

– 'shape' by distance
– Out of sight, out of mind

• Cons
> Prone to cheating

> Need to trust sender as to position
> Need to trust shooter as to hit/miss

> Occasional 'warping' or other artifacts
• In general, technique used by all vehicle sims

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Quake: The first client/server game

• S erver runs
authoritative
simulation

• Clients run open
loop/asynch views
> Really rich

“controllers” for
server.

In
pu

t

Computer 1

In
pu

t

Computer 2

Game Server

In
pu

t

In
pu

tObject
Update

Object

Update

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Quake: The first client/server game

• Pros ?

In
pu

t

Computer 1

In
pu

t

Computer 2

Game Server

In
pu

t

In
pu

tObject
Update

Object

Update

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Quake: The first client/server game

• Pros
> Cheating is much

more difficult
> S till not totally

impossible
> Aimbot

• Cons ?

In
pu

t

Computer 1

In
pu

t

Computer 2

Game Server

In
pu

t

In
pu

tObject
Update

Object

Update

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Quake: The first client/server game

• Pros
> Cheating is much

more difficult
> S till not totally

impossible
> Aimbot

• Cons
> What looks like hit to

shooter can miss
> “Low Ping

Bastard” (LPB) effect
In

pu
t

Computer 1

In
pu

t

Computer 2

Game Server

In
pu

t

In
pu

tObject
Update

Object

Update

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

First Person Shooters Today

• S till fundamentally Quake model
• Player interactivity limited to control LPB effect
• Packet encryption to defeat aimbot

> Not perfect security, but generally good enough

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Game Discovery: LANs

• On LAN, players communicated with
broadcast
> First, broadcast play

> Only one game session per LAN
> Later, broadcast discovery, unicast play

> Multiple sessions per LAN

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Game Discover: WANs

• In Cyberspace, no one can hear you broadcast
> On Internet, players need each others IPs
> Initially, player entered manually

> Found each other through IRC
> GameS py offers discovery service

> Programmatic, but still over IRC
> S imple directory server plus chat
> Funded by advertising on client

> TEN and MPath offer complete services
> Net APIs and star architecture comm servers

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Game Discovery Today
• TEN and MPath are gone
• Gamespy

> Industry standard
> has expanded data services
> Now has comm API

> Thin wrapper over peer to peer TCP/IP and UDP
> Does UDP socket introduction through IRC

> Licensed per game, advertising in Gamespy client
> Most games don't use the Gamespy client

• Xbox Live/ PC Live
> Microsoft's attempt to get into the TEN/MPath

space
> Yearly fee, electronic retailing

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Tomorrow... MUDs and MMOs or..

“The British are Coming!”

End of Unit One

Unit Two:
MMO Architecture in
Depth

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

What this lecture is about

The Evolution of MUDs and MMOs

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Lecture Overview, Day Two
• The evolution of the MMO

> From MUD to WOW in 30 minutes

• The Difficulties facing today's MMO developers
> The motivations for Project Darkstar

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

MUD's and MMOs

Foreign DNA

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Meanwhile, in merrie olde England

• The Birth of the MUD
> Multi-user text

adventures
> Event driven servers
> Textual command

based world
simulation
> User submits text, eg

“take sword”
> S erver updates world

state and sends textual
reply

– Others also see text for
world state change

Te
xt

Text terminal

Te
xt

Text Terminal

MUD Server

Te
xt Te
xtText

Text

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Meanwhile, in merrie olde England

• Used concept of
“room” to break down
n-squared
communication
problem

> Only those in room
'see' changes to room
state

> Only those in room can
act on others in room

> What if you run out of
rooms?

– Virtual /'instanced'
rooms

Te
xt

Text terminal

Te
xt

Text Terminal

Te
xt

Te
xt

Text Text

RoomRoom

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Ultima Online: The Visual MUD

• 2D game for client
> Levels or “maps” as in

previous 2D games
> Each player on map

has a position

• MUD for server
> Map becomes feature

of room (Zone is
born)

> Position on map
becomes feature of
player object

In
pu

t

Local Sim

In
pu

t

Local Sim

Te
xt

Te
xt

Text Text

ZoneZone

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Ultima Online: The Visual MUD

• Hybrid of vehicle sim
and text mud
> Motion == Open

Loop/Asynch game
> Higher frequency then

vehicle sim
> Gen. more players at

once
> Loose combat model

compensates
> World interaction ==

event driven MUD
> S till text & event driven

In
pu

t

Local Sim

In
pu

t

Local Sim

Te
xt

Te
xt

Text Text

ZoneZone

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Ultima Online: The Visual MUD

• Issues?

In
pu

t

Local Sim

In
pu

t

Local Sim

Te
xt

Te
xt

Text Text

ZoneZone

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Ultima Online: The Visual MUD

• Issues?
> Over-crowding of

“popular rooms”
> “fire marshal limit”

> S calability limited by
power of server
> Replicate server

> S erver crash loses
state of whole world
> S tatic worlds
> Persistence of users

– Inventory
– Experience
– Quest flags

In
pu

t

Local Sim

In
pu

t

Local Sim

Te
xt

Te
xt

Text Text

ZoneZone

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Everquest (EQ): The birth of the Shard

• EQ needed more
power
> More users
> More work per user

(3D world)

• S olved by clustering
> S erver per Zone
> One cluster is called a

'shard'
> S hard is represented

to user as one 'server'
> Terminology left over

from UOL

In
pu

t

Local Sim

In
pu

t

Local Sim

Zone
Server

Te
xt

Te
xt

Text

Text

Zone
Server

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Everquest (EQ): Further load reduction

• EQ needed more
power
> More users
> More work per user (3D

world)

• S olved by clustering
> Moved MOB AI to

separate server
> A system “player”

> Other special servers
> Commerce
> Chat
> Physics (CoX)

In
pu

t

Local Sim

In
pu

t

Local Sim

Zone
Server

Te
xt

Te
xt

Text

Text

Zone
Server

AI
Server

AI
Server

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Everquest (EQ): Further load reduction

• Issues?
> Many single points of

partial failure
> Zone server failure

means loss of zone
state
> Like UO but only

partial loss of world
> Over crowded zones

> Return of the fire
marshall

> Under utilized zones
> Wasted CPU

resources

In
pu

t

Local Sim

In
pu

t

Local Sim

Zone
Server

Te
xt

Te
xt

Text

Text

Zone
Server

AI
Server

AI
Server

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Phantasy Star Online: The rebirth of the
Virtual Room

• Question: Can we do better scaling then
shards?

• PS O Answer: M ission Instancing
> One standard zone as a “hub”

> Chat
> Create parties
> Get a 'mission'

> Mission is a virtual zone
> Created when party enters
> Destroyed when party leaves
> Limits n-squared to max party size
> Only has state while occupied

– Can be run on a random machine from a pool

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Modern MMOs
• Generally some mix of persistent and

instanced Zones
> Guild Wars

> Towns persistent, all else instanced
> Like PS O with multiple hubs

> CoH/CoV
> Persistent outdoors divided into Zones

– Outdoors 'street sweep' missions

> Instanced 'indoors '
– Indoor instanced missions

> Late addition: Instanced outdoors
– Duplicates for over-flow
– Breaks immersion some

● “Are you in Atlas 1 or Atlas 2? ”

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

That's the state of the art today
• Various minor tweaks

> Incremental improvements
> Different mixes of techniques

• Things to remember
> Game development is a me-too business

> Technical evolution happens slowly due to risk
> Mostly focused on client experience

> Architectural innovation happens elsewhere
> Biggest leaps are usually the adoption of techniques

already proven elsewhere

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Issues Facing Today's Game Developer
• S ingle player games expanding user

expectations
> Physics
> Advanced AI
> Interactive Environments

• Online user base growing non-linearly
> Great for business, bad for engineering

• All this == greater hunger for CPU and
communication bandwidth

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Game development hit the wall

• The game loop is a mono-threaded view of the
world
> “near-realtime” coding is what game developers

know how to do

• Past growth was fueled by Moore's law CPU
speed ups
> CPUs suddenly stopped getting faster
> Moore's law is now multiplying cores instead

> Taking advantage of it is hard
– Outside game developers ' skill sets

> Most business oriented solutions too slow and limiting
– Business app servers optimized for avg throughput

● Games care more about worst case latency
– Wrong model-- still need to know about locks and databases

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

The answer.... Project Darkstar
● Research Question:

● Observation: Multi-threaded, multi-machine code is
vital to enable future online games

● Observation: Multi-threaded, multi-machine coding
is very hard to get right

● Observation: Game coders know nothing about
multi-threaded programming

● The Question: Can we make multi-threaded, multi-
machine game code automatically out of mono-
threaded programs in a way that optimizes for worst
case latency?

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Is this possible?
● Can we make multi-threaded, multi-machine

code automatically out of mono-threaded
programs?
● No. Pretty much proved impossible

● Can we make multi-threaded, multi-machine
online game code automatically out of mono-
threaded programs?
● A special case
● With a few constraints we believe this is possible

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

How?

Tune in Thursday ... same bat time... same bat
channel

End of Unit Two

Unit Three:
Project Darkstar

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

What this lecture is about

The motivation and architecture of Project
Darkstar

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Lecture Overview, Day Three
• Review: MMOs today

> Today's MMO architecture
> Issues facing today's developers

• Project Darkstar
> The motivations for Project Darkstar

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Traditional MMO Architecture

• World broken up
geographically into
“Zones”

• Each Zone is on a
Zone S erver

• All state for that
Zone in Zone
S erver's memory

• User state check
pointed to Login
S erver

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Typical MMO Scene

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Whats going on here?

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Whats going on here?

• These players are
dealing with a
merchant

• This player is
talking with an NPC

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Whats going on here?

• These players are
fighting a Dragon

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Traditional Architecture: Load

• All this action
occurs in Zone A
> Must be processed

by Zone S erver A
> Other Zone S ervers

can be idle

• Geographic
Distribution
> Industry standard

architecture
> Would be perfect if

people were
Gaussian

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Traditional Architecture: Failure

• If Zone A server
fails
> Zone's game state

is lost
> Players states are

lost back to last
checkpoint

> Players cannot get
back in until server
is restored
> Just happened to me

on CoH
> Required CS R action

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

MMOs are inherently parallel

• Wouldn't it be great
if the action could
be split up?
> Merchant being

processed by one
server

> NPC chat by another
> Fight by another

• Problems:
> Interactions are

many, varied and
dynamic

> Parallel programing is
hard

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

What we really want is...

• A way to dynamically allocate interactions
to a pool of servers

• A way to get whatever data is needed to
that server

• A way to recover state in the case of
failure

• A coding model that is comfortable and
intuitive for people who think mono-
threaded
• ENTER PROJECT DARKS TAR

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Recall...

• S cales badly
• Wastes resources
• Limits persistence
• Has problematic

failure modes

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Project Darkstar Architecture

• S tateless
processing nodes

• Identical code on
each processing
node

• Data is stored in a
meta service (Data
Manager)

• Data flow to
processing nodes
as needed

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Darkstar application model
• Event-driven Programs

> Event generates a task
> Task code is apparently mono-threaded
> Tasks are independent
> Code that does not meet this model must be

deployed in a Darkstar “service”

• Tasks must
> Be short-lived
> Access data through Darkstar services
> Communicate through Darkstar services

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Making it multi-threaded
• All tasks are transactional

> E ither everything is done, or nothing is
> Commit or abort determined by data access

and contention

• Data access
> Data store detects conflicts, changes
> If two tasks conflict

> One will abort and be re-scheduled
> One will complete

• Transactional communication
> Actual communication only happens on

commit

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Project Darkstar Data Store
• Not a relational database

> Is an enterprise class database
> Reliable, S calable, Fault Tolerant

> No S QL
> Optimized for 50% read/50% write

• Keeps all game state
> S tores everything persisting longer than a

single task
> S hared by all copies of the stack

• No explicit locking protocols
> Detects changes automatically
> Programmer can provide hints for optimization

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Project Darkstar Communication
• Listeners hear client communication

> S imple client protocol
> Listeners established on connection

• Client-to-client through the server
> Very fast data path
> Allows server to listen if needed

> Can slow down communication

• Mediation virtualizes end points
> Indirection abstracts actual channels
> Any processing node can talk to any user

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Distributing the load
• Darkstar tasks can run anywhere

> Data comes from the data store
> Communications is mediated
> Where a task runs doesn't matter

• Tasks can be allocated on different
machines
> Players on different machines can interact
> The programmer doesn't need to chose

• Tasks can be moved
> Meta-services can track loads and move tasks
> New stacks can be added at runtime

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

The End Result
• Game programmer friendly programming

model
> A single thread
> A single machine

• Multiple threads
> Task scheduling part of the infrastructure
> Concurrency control through the data store,

transactions

• Multiple machines
> Darkstar manages data and communication

references
> Computation can occur on any machine
> Machines can be added (or subtracted) at any

time

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Some additional advantages
• Entire world is persistent

> Not just user data
> World can evolve
> Durability guaranteed within a few seconds

• Major sources of error eliminated
> Race conditions
> Breaks in referential integrity

> “dupe” bug

• Fails over and tolerates failure
> Loss of individual node just increases load on

others
> Enterprise class Data S tore recovers from

complete failure

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Does not apply to many problems

• NOT A GENERAL S OLUTION TO
MULTI-THREADED PROGRAMMING
> Impossible, remember?
> The system works because of the

assumptions we make that happen to match
how games work
> S ystem tuned for worst-case latency

– J2EE tuned for transactional throughput

> S ystem tuned for lots of little packets
– Not a distribution server
– For distribution of large static data blocks there are

existent solutions
● Web servers
● S treaming servers

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

However...

• Can apply to other kinds of games
> Great platform for MMO casual games
> Good platform for Matchmaking and social services

• Can apply to “game-like” applications
> Car Auctions
> Military simulation
> Who knows? ?

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Tomorrow

Coding for Project Darkstar

Unit Four:
Implementing a Project
Darkstar based game
server

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

What this lecture is about

The nitty gritty details of coding using Project
Darkstar

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Part One

Client/Server design for Chess

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Chess as a casual massively multiplayer
game

• What belongs on client?
> Game session management

> Keep it simple – Every two players is a game
> Need a login interface

> Game interface
> Game board display and animation
> Move entry
> Other game displays (timer? In-game chat?)

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Chess as a casual massively multiplayer
game

• What belongs on S erver?
> Game S ession Management

> Collect pairs of users
> Create a game session for each pair

> Game logic
> Game state storage
> Rules engine
> AI for single player games

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Part Two

Fundamental Project Darkstar “Moving Parts”

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Tasks

• Darkstar application code is executed in Tasks
> A task is a thread of control plus a transactional

context.
> Are time limited (default is 100ms)
> Can be one-shot or repeating
> Can be delayed or AS AP

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Task Execution

• Execution is event driven
> Event is translated to a task
> User events

> Result of client action (login,send,logoff,etc)
> Are ordered in relation to user
> Are unordered in relation to other users or system events.

> S ystem Events
> Generated by S ervices
> Queued by other tasks

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

System Events and Event Listeners

• Two system event listener interfaces
> AppListener

> Two event methods on AppListener
– initialize()
– loggedIn(...)

> ClientS essionListener
> receivedMessage(...)
> disconnected(...)

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Managed Objects

• Tasks execute methods on Managed Objects
> Actually, this is an over-simplification but good

enough for now

• Managed Objects are..
> S tored in DataS tore automatically
> Can be bound to a name
> Referenced through ManagedReference
> Almost POJO

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Life Cycle of a Managed Object

• MO is implicitly created in database the first
time it is “seen” by the Data Manager.
> Ie DataManager.createReference(...) or

DataManager.setBinding(...)

• MO state is saved at end of task
• MO must be explicitly destroyed

> DataManager.remove(...)
> There is NO gc of the database

• MO methods get executed by tasks or other
MOs

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Making Managed Objects

• Managed Object is a POJO that implements
S erializable and ManagedObject
> Executed by events
> Persistence managed by Project Darkstar server

public class Counter implements
 Serializable,ManagedObject {

int count=0;
public int incrCount() {

return count++
}

}

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Managed Objects

• ManagedObject do not require explicit locking
> However hinting helps the system optimize

> Call into system using managers
> Get managers using AppContext

public class Counter implements
 Serializable,ManagedObject {

int count=0;
public int incrCount() {

DataManager dmgr=AppContext.getDataManager();
dmgr.markForUpdate(this);
return count++

}
}

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Managed Reference

• Managed Objectss must reference other
Managed Objects through ManagedReference
fields
> Java objects referenced through Java reference

fields are part of the private state of the containing
Managed Object
> Eg the int in Counter is part of the Counter instance's

state
> Managed References break the serialization graph

and allow reference between Managed Objects
> The reference is part of the containing MO, but the MO

referenced has its own state

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Managed Reference Example

• Wrong (will exception at runtime):
public class MyObj implements S erialzable, ManagedObject {

Counter myCounter= new Counter;

public class incr(){
return counterIncr;

}
}

• R ight
public class MyObj implements S erialzable, ManagedObject {

ManagedReference myCounterRef=
AppContext.getDataManager().createReference(

new Counter);

public class incr(){
return myCounterRef.(Counter.class).incr();

}
}

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Services and Managers
• Managed Obejct code calls S ervices through

Managers
> A service is..

> A non-transactional piece of code
– Not time limited

> Not distributed (local to the VM)
– May implement its own distribution scheme

> Can talk to other services
> Extensible

– New services many be plugged into the system

> The “driver level” of the system
> A manager is..

> A Task facing facade for a S ervice
> Not required for all S ervices

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Std Services with Managers
• Used by Tasks, S ystem or other S ervices

> Channel Manager
> Provides efficient data transfer to groups of users spread

across many nodes
> Data Manager

> Provides access to the Managed Objects
> Task Manager

– Provides ability to queue new tasks

> Future services under consideration
> Long running task manager

– Provides easy way to do non-transactional time unbounded
tasks

> RDBMS manager
– Access to external JDBC database

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Std Services without Managers
• Used by other services and/or system
• Can also generate events
• Watchdog S ervice

> Watches health of nodes

• Node mapping service
> Maintains knowledge each node's workload
> Redistributes work in case of node failure

• Client S ession S eS rvice
> Handles client logon/logoff
> Maintains knowledge of client connection point

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

System Bootstrap

• How do initial listeners get registered?
• AppListener is “bootstrap” MO

> AppListener class defined in app properties file
> Iff there are no MOs in data store when server

starts
> S erver creates bootstrap MO of specified class
> S erver registers that MO as the system AppListener for

the two system events
> S ystem generates an initialize() event

– Initialize() method sets up game MOs

• ClientS essionListener returned from
AppListener.loggedIn(...)
> Failure to return a C lientS essionListener results in

immediate session termination

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Standard Managers and Events

• Data Manager
> Interface to data store
> Generates no events

• Task Manager
> Interface to task queue
> Generates no events

> Can do repeating tasks, sort of like heartbeat event

• Channel Manager
> Interface to channel system
> Can generate events

• Other managers may be plugged in
> Can generate events if needed

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Coding for Darkstar

Some best and worst practices

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Designing Managed Objects

• Avoid Object Contention
> Code is apparently mono-threaded
> Darkstar takes locks underneath
> Ergo: Must design app to avoid object contention

• Balance contention with overhead
> Fetching each object has some fixed overhead
> Loading object has variable overhead according to

size
> Ergo: Managed Object should encapsulate all data

that is used together but as little other data as
possible, bounded by a trivial size

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Avoid unscalable algorithms

• Exponential growth will kill you
> Object access has a cost
> Touching n-squared objects is death

> Example: polling all objects to see who is close
> Communication has a cost

> S ending n-squared packets is death
> Example: everyone in a single chat

• Divide and Conqour
> Create “awareness groups”

> Remember the MUD rooms?
> Proactive objects

> Put themselves in/out of groups

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Implementing Managed Objects

• A few constraints
> No inner classes (except static ones)

> Hold invisible references that can mess up serialization
> No static fields (except final static ones)

> S tatic field values specific to a VM
> ManagedObjects float between many VMs

> No references to shared Java objects
> Every primitive and object referenced by a

ManagedObject is part of its own state
> No Java references to other ManagedObjects

> Use ManagedReference
> Breaks the serialization graph

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Using Managed Objects

• Locking behavior
> Working copy is fetched from ManagedReference:

> Get() is a read lock
> GetForUpdate() is a write lock
> MarkForUpdate() is a promotion from read to write
> Managed Objects that are only read locked but are

changed will be promoted to write locked at task commit
time

> Multiple locks are harmless
> Write locks cannot be de-promoted
> All locks are held til task commit
> Task aborts in deadlock, commits on exit

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Locking Strategy

• In general....
> Use get() if you do not know if an object will be

updated
> Use getForUpdate() or markForUpdate() when you

know it will get updated

• Unless you are an expert in multi-processing,
this will produce the best results

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Thinking Project Darkstar

A few common anti-patterns..... see if you can spot
the problem!

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Anti-pattern One

Player Object
(ClientSessionListener)

Login Object
(AppListener) Player Object

(ClientSessionListener)
d

Map<name,ManagedReference>

AppListener maintains a Map of all registered users
to their login names

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Anti-pattern One: Serialization of common
occurence

Player Object
(ClientSessionListener)

Login Object
(AppListener) Player Object

(ClientSessionListener)

• Every new user must lock Login Object
> S erializes new user creation
> Use name bindings instead to find user object

Name binding

Name binding

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Anti-pattern Two:

Global Item List
(Managed Object)

Game ItemGame ItemGame ItemGame ItemGame ItemGame ItemGame ItemGame Item
Game Item
Game Item
Game Item

TreeSet<ManagedReference>

A managed object keeps a TreeSet of all games
items currently in the world.

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Anti-pattern Two: Large Java Collection or
Array

Global Item List
(Managed Object)

Game ItemGame ItemGame ItemGame ItemGame ItemGame ItemGame ItemGame Item
Game Item
Game Item
Game Item

ScalableSet<ManagedReference>

• Java Collection types do not scale
> User proper sparse data structures
> Where a large collection is truly required, use

ProjectDarkstar collection types
> S calableS et
> S calableHashMap

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Anti-pattern Three

Character
(Managed Object,

Combattant)
Health

Combat Points

Attack monster
event Monster

(Managed Object,
Combattant)

Health
Combat Points

Attack player
event

• Each attack subtracts a combat point and
subtracts health from opponent.
> Common code

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Anti-pattern Three: Deadlocks

Character
(Managed Object,

Combattant)
Combat Points

Attack monster
event

Monster
(Managed Object,

Combattant)
Combat Points

Attack player
event

• Each combattant locks self, then opponent
> Almost gauranteed deadlock

• R ight solution is to split health and combat
points on separate Managed Objects

Health
(Managed Object)

Managed Reference

Health
(Managed Object)

Managed Reference

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Part Four

Chess Server Object Design

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Session Management

• Features
> Logon
> Find or create a UserObject for this user
> Group every two users to a new board

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Project Darkstar ChessLogin AppListener

• On initialize()
> Nothing to do
>

ChessLogin
(AppListener)

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Project Darkstar ChessLogin AppListener
• On loggedIn(...)

> Lookup User object by
bound name

> Iff User object does not exist
> Create and bind to name

ChessLogin
(AppListener)

User
(ClientSessionListener)

Online

User
Offline

User
Offline

User
Offline

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Project Darkstar ChessLogin AppListener
• On loggedIn(...)

> ...
> Create game session
> Add ptr to game session to

use
> Return User object

ChessLogin
(AppListener)

User
(ClientSessionListener)

Online

ManagedReference

Game Session

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Project Darkstar ChessLogin AppListener
• On dataReceived(...)

> User parses message
> Calls appropropriate method

on Game S ession

• On disconnected()
> Call playerLeft on Game

S ession
> Game S ession declares

remaining player the winner
> Game session cleans up

User
(ClientSessionListener)

Online

Game Session

dataReceived

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Game Session
• Handles no events

• Has entry points for user
objects to call

• Maintains board state

• Runs AI for server's moves

Game Session

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Doing the Chess AI
• Walking the entire move tree

will take more then 100ms

• S oln is to break each node's
evaluation into a separate task

• Tasks chain using the
TaskManager

• Nodes recurse scheduling tasks

• nextChild() calls
parent.nextChild() when no
children are left to process

Root node

Queues task for next node

TaskManager

ChildNode

run()

ne
xt

C
hi

ld
()

Copyright 2008 S un Microsystems, Inc. All R ights Reserved. Revis ion A

Tree Walk code provided to you

• Abstract base class
InOrderTreeNode
> Implement abstract

methods
> Instantiate root node
> Call root.evaluate()

• Example app
included:
InOrderWordJumbler

Root node

Queues task for next node

TaskManager

ChildNode

run()

ne
xt

C
hi

ld
()

