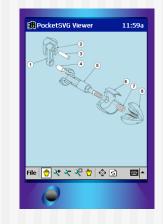

IMGD 4000: Computer Graphics in Games

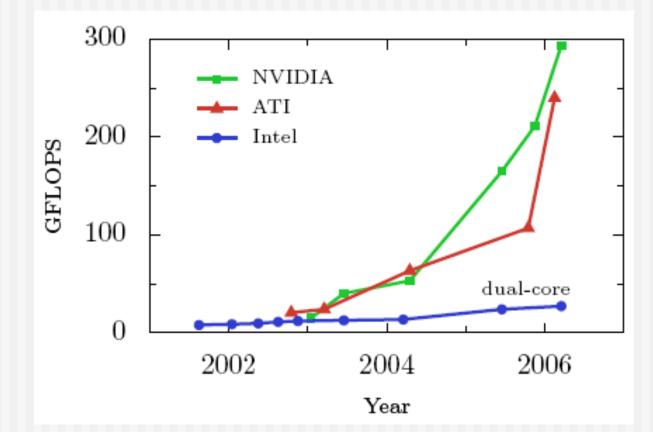

Emmanuel Agu

Professor Background

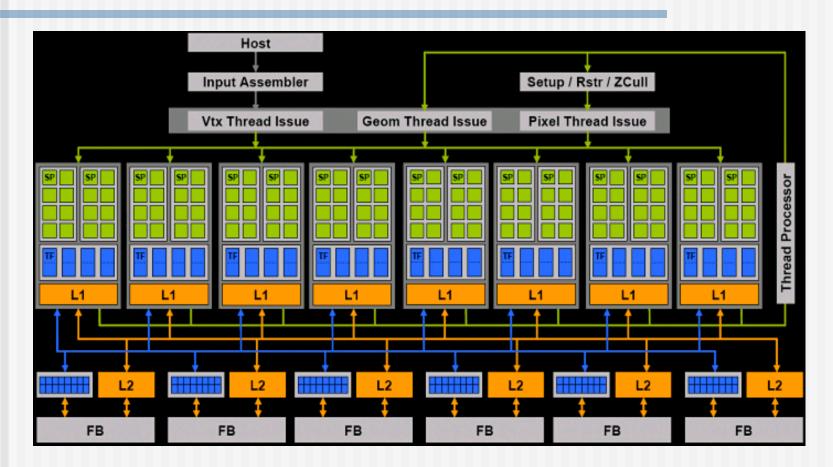
- Dr. Emmanuel Agu (professor, "Emmanuel")
- Research areas
 - Computer Graphics (GPU rendering, mobile graphics, etc)
 - wireless networking and mobile computing
- Advise MQPs, MS and PhD theses

Graphics Trends for Games

- Hardware GPUs
 - Powerful
 - Programmable
 - Geometry shaders
- Capture
- Ray tracing


Trend 1: Graphics Processing Unit

- OpenGL and DirectX are one of most popular graphics libraries
 - Current trend: Implement OpenGL, DirectX on a specialized chip (Graphics Processing Unit (GPU) on your graphics card
- Initially, just hardcode graphics operations onto chip, increase speed
- Powerful, inexpensive, Giga-FLOPS, huge arithmetic ability!
- Programmable: in recent 5 6 years
 New operations just added. Possibility to apply to nongraphics application.
- Increasing precision


Computational Power

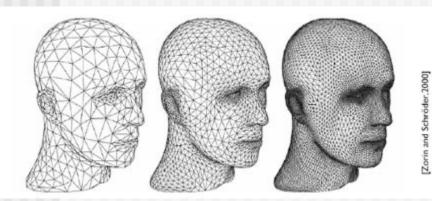
- NVIDIA GeForce 9800 GX2 (\$550) 1 Tera-FLOPs, 128 GB/sec memory bandwidth;
- ATI Radeon HD 3870 X2 (\$450) 1 TeraFLOPS
- Dual-core 3.7 GHz Intel Pentium Extreme Edition 965.(Around \$800) 8.5 GB/sec and 25.6 GFLOPS theoretical peak for the SSE units

GPU Computational Power Growth

Nvidia 8800

Block diagram of the GeForce 8800. Source: NVIDIA 681 million transistors 1.35GHz 128 stream processors

Programmable GPU?

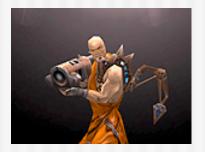

- GPGPU: General-Purpose Computation on GPU. Nongraphics application
- Programmable: hack non-graphics applications onto GPU
- Program applications as collection of shaders OR
- New GPGPU programming languages for non-graphics people (Nvidia's CUDA, AMD's CAL, Rapidmind)
- GPGPU applications:
 - Physically based simulation: fluid Dynamics; Cloth simulation,
 - Signal and Image Processing
 - Medical imaging
 - Database query/data mining
 - Global illumination algorithms: Ray tracing, photon mapping

Why are GPUs getting so fast?

- Arithmetic intensity: use more transistors for computation and less for decision logic.
- Economics: Demand is high thanks to multibillion dollar game industry.
 - More chips produced => lower price
- AMD + ATI => Fusion chips....Cool idea?

Geometry Shaders

- New shader unit, can generate new vertices, primitives from original set
- Tesselation and simplification algorithms on GPU
- Real-time LoD management in game



Computer Graphics in Games

Elements?

- Model geometry
- Apply colors, shading
- Shadows
- Texture mapping
- Fog
- Transparency and blending
- Anti-aliasing

Courtesy: Madden NFL game

Trend 2: Capture

- Old way: write models, equations to model:
 - Object geometry, lighting (Phong), animation, etc
- New way: capture parameters from real world
- Example: motion in most sports games (e.g. NBA 2K live) is captured.
 - How? Put sensors on actors
 - Let them play game
 - Capture their motion
 - Put motion in a database
 - Replay database when real players play game

How is capture done?

Capture:

- Digitize real object geometry and attributes
- Use cameras, computer vision techniques to capture rendering data
- Place data in database, many people can re-use
- Question: What is computer vision?

Geometry Capture: 3D Scanning

- Capturing geometry trend: Projects on precise 3D scanning (Stanford, IBM,etc) produce very large polygonal models
- Some models too large to be loaded by most machines

Model: David

Largest dataset Size: 2 billion polygons, 7000 color images!!

Courtesy: Stanford Michael Angelo 3D scanning project

Exactly What Can We Capture?

1. Appearance (volume, scattering, transparency, translucency, etc)

3. Reflectance & Illumination

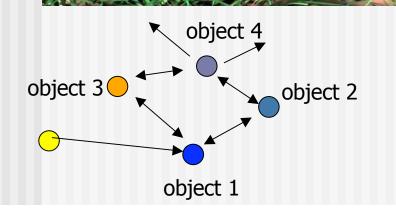
4. Motion

Light Probes: Capturing light

Amazing graphics, High Dynamic Range?

Why effort to capture?

 Big question: If we can capture real world parameters, what advantages does computer graphics have?


Trend 3: Raytracing in Games

Raytracing: A global illumination rendering

Reflection / refraction / shadow

