

 1

IMGD 4000 (D 08) 1

Professor Charles Rich
Computer Science Department
rich@wpi.edu

Basic Game AI

Technical Game Development II

IMGD 4000 (D 08) 2

Definitions?

 What is artificial intelligence (AI) ?
• subfield of computer science ?
• subfield of cognitive science ?

 What is “AI for Games” ?
• versus “academic AI” ?
• arguments about “cheating”

In games, everything (including the AI) is in service of the
player’s experience (“fun”)

Resources: introduction to Buckland, www.gameai.com,
aigamedev.com, www.aiwisdom.com, www.ai4games.org

 2

IMGD 4000 (D 08) 3

What’s the AI part of a game?

 Everything that isn’t graphics (sound) or
networking... 
• or physics (though sometimes lumped in)
• usually via the non-player characters
• but sometimes operates more broadly, e.g.,

– Civilization games
– interactive storytelling

IMGD 4000 (D 08) 4

“Levels” of Game AI

 Basic
• decision-making techniques commonly used in

almost all games

 Advanced
• used in practice, but in more sophisticated games

 Future
• not yet used, but explored in research

 3

IMGD 4000 (D 08) 5

This course

 Basic game AI (this week)
• decision-making techniques commonly used in

almost all games
– decision trees
– (hierarchical) state machines
– scripting
– minimax search
– pathfinding (beyond A*)

 Advanced game AI (weeks 5-6)
• used in practice, but in more sophisticated games

– autonomous movement, steering (3 lectures)
– goal-based AI in Halo 3 (2 lectures from GDC)

IMGD 4000 (D 08) 6

Future Game AI ?

 Take IMGD 400X next year (B)
“AI for Interactive Media and Games”
• fuzzy logic
• more goal-driven agent behavior

 Take CS 4341 “Artificial Intelligence”
• machine learning
• planning

 4

IMGD 4000 (D 08) 7

Two Fundamental Types of AI Algorithms

 Search vs. Non-Search
• non-search: amount of computation is predictable

(decision trees, state machines)
• search: upper bound depends on size of search

space (often large)
– scary for real-time games
– need to otherwise limit computation (e.g., threshold)

 Where’s the “knowledge”?
• non-search: in the code logic (or external tables)
• search: in state evaluation and search order

functions

First Basic AI Technique:

Decision Trees

Reference: Millington, Section 5.2

 5

IMGD 4000 (D 08) 9

Decision Trees

 The most basic of the basic AI techniques

 Easy to implement

 Fast execution

 Simple to understand

IMGD 4000 (D 08) 10

Deciding how to respond to an enemy

if (visible) {
 if (close) {
 attack;
 } else {
 if (flank) {
 move;
 } else {
 attack;
 }
 }
} else {
 if (audible) {
 creep;
 }
}

attack

moveattack

creep

yes

visible?

flank?

close?audible?
no

yes
yes

yes

no

no

no

 6

IMGD 4000 (D 08) 11

Which would you rather modify?

if (visible) {
 if (close) {
 attack;
 } else {
 if (flank) {
 move;
 } else {
 attack;
 }
 }
} else {
 if (audible) {
 creep;
 }
}

attackcreep

yes

visible?

close?audible?
no

yes
yes

no

no

moveattack

flank?

yesno

if (visible) {
 if (close) {
 attack;
 } else if (flank) {
 move;
 } else {
 attack;
 }
} else if (audible) {
 creep;
}

???

IMGD 4000 (D 08) 12

Designing OO Decision Trees

class Node
 def decide()

class Action : Node
 def decide()
 return this

class Decision : Node
 yesNode
 noNode
 testValue

 def getBranch()

 def decide()
 return getBranch().decide()

class MinMax : Decision
 minValue
 maxValue

 def getBranch()
 if maxValue >= testValue >= minValue
 return yesNode
 else
 return noNode

(see Millington, Section 5.2.3)

 7

IMGD 4000 (D 08) 13

Building and Maintaining a Decision Tree

visible = decision[0] = new Boolean...
audible = decision[1] = new Boolean...
close = decision[2] = new MinMax...
flank = decision[3] = new Boolean...

attack = action[0] = new Move...
move = action[1] = new Move...
creep = action[2] = new Creep...

visible.yesNode = close
visible.noNode = audible

audible.yesNode = creep

close.yesNode = attack
close.noNode = flank

flank.yesNode = move
flank.noNode = attack

attack

moveattack

creep

yes

visible?

flank?

close?audible?
no

yes
yes

yes

no

no

no

...or a graphical editor

IMGD 4000 (D 08) 14

Performance Issues

 individual node tests (getBranch) typically
constant time (and fast)

 worst case behavior depends on depth of tree
• longest path from root to action

 roughly “balance” tree (when possible)
• not too deep, not too wide
• make commonly used paths shorter
• put most expensive decisions late

 8

Next Basic AI Technique:

(Hierarchical) State Machines

References: Buckland, Chapter 2
 Millington, Section 5.3

IMGD 4000 (D 08) 16

State Machines

on guard

run away

fight
small enemy

large enemy
losing fightescaped

 9

IMGD 4000 (D 08) 17

Hard-Coded Implementation

class Soldier

 enum State
 GUARD
 FIGHT
 RUN_AWAY

 currentState

 def update()
 if currentState = GUARD {
 if (small enemy)
 currentState = FIGHT
 startFighting
 if (big enemy)
 currentState = RUN_AWAY
 startRunningAway
 } else if currentState = FIGHT {
 if (losing fight) c
 currentState = RUN_AWAY
 startRunningAway
 } else if currentState = RUN_AWAY {
 if (escaped)
 currentState = GUARD
 startGuarding
 }

on guard

run away

fight
small enemy

large enemy
losing fightescaped

IMGD 4000 (D 08) 18

Hard-Coded State Machines

 Easy to write (at the start)

 Very efficient

 Notoriously hard to maintain (e.g., debug)

 10

IMGD 4000 (D 08) 19

Cleaner & More Flexible Implementation
class State
 def getAction()
 def GetEntryAction()
 def getExitAction()
 def getTransitions()

class Transition
 def isTriggered()
 def getTargetState()
 def getAction()

class StateMachine

 states
 initialState
 currentState = initialState

 def update()

 triggeredTransition = null

 for transition in currentState.getTransitions()
 if transition.isTriggered()
 triggeredTransition = transition
 break

 if triggeredTransition
 targetState = triggeredTransition.getTargetState()
 actions = currentState.getExitAction()
 actions += triggeredTransition.getAction()
 actions += targetState.getEntryAction()

 currentState = targetState
 return actions
 else
 return currentState.getAction()

...add tracing

(see Millington, Section 5.3.3)

IMGD 4000 (D 08) 20

Combining Decision Trees & State Machines

 Why?
• to avoid duplicating expensive tests

alert

defend

alarmplayer in sight AND far

player in sight AND near

 11

IMGD 4000 (D 08) 21

Combining Decision Trees & State Machines

alert

defend

alarm

player in sight?
far?

yes

yes

no

no

IMGD 4000 (D 08) 22

Hierarchical State Machines

 Why?

search

goto
disposal

goto
 trash

see trash

trash disposed

have trash

 12

IMGD 4000 (D 08) 23

Interruptions (Alarms)

search

goto
disposal

goto
 trash

see trash

trash disposed

have trash

recharge

low powerrecharged

recharge

low powerrecharged

recharge

low powerrecharged

(search) (trash)

(disposal)
6 - doubled the number of states!

IMGD 4000 (D 08) 24

Add Another Interruption Type

12 - doubled the number of states again!

hide

battleall clear

(search/recharge)

hide

hide

hide

hide
hide

 13

IMGD 4000 (D 08) 25

Hierarchical State Machine

search

goto
disposal

goto
 trash

see trash

trash disposed

have trash

clean

recharge
low power

recharged

• leave any state in (composite) ‘clean’ state when ‘low power’

• ‘clean’ remembers internal state and continues when returned to via ‘recharged’’

IMGD 4000 (D 08) 26

Add Another Interruption Type

search

goto
disposal

goto
 trash

see trash

trash disposed

have trash

clean

recharge
low power

recharged

hide
battle

all clear

7 states (including composite) vs. 12

battle all clear

hide
(recharge)

(clean)

 14

IMGD 4000 (D 08) 27

Cross-Hierarchy Transitions

 Why?
• suppose we want robot to top-off battery if it

doesn’t see any trash

search

goto
disposal

goto
 trash

see trash

trash disposed

have trash

clean

recharge
low power

recharged

IMGD 4000 (D 08) 28

Cross-Hierarchy Transitions

search

goto
disposal

goto
 trash

see trash

trash disposed

have trash

clean

recharge
low power

recharged

less than 75% power

 15

IMGD 4000 (D 08) 29

Implementation Sketch

class State

 # stack of return states
 def getStates() return [this]

 # recursive update
 def update()

 # rest same as flat machine

class Transition

 # how deep this transition is
 def getLevel()

 # rest same as flat machine

struct UpdateResult # returned from update
 transition
 level
 actions # same as flat machine

class HierarchicalStateMachine

 # same state variables as flat machine

 # complicated recursive algorithm
 def update ()

class SubMachine : State,
 HierarchicalStateMachine

 def getStates()
 push [this] onto currentState.getStates()

(see Millington, Section 5.3.9)

Next Basic AI Technique:

Scripting

References: Buckland, Chapter 6
 Millington, Section 5.9

 16

IMGD 4000 (D 08) 31

AI Scripting

Has something to do with:

 scripting languages

 role of scripting in the game development

process

IMGD 4000 (D 08) 32

Scripting Languages

You can probably name a bunch of them:

 general purpose languages
• Tcl, Python, Perl, Javascript, Ruby, Lua, ...

 tied to specific games/engines
• UnrealScript, QuakeC, HaloScript, LSL, ...

 17

IMGD 4000 (D 08) 33

General Purpose Scripting Languages

What makes a general purpose scripting language
different from any other programming language?

 interpreted (byte code, virtual machine)
• faster development cycle
• safely executable in “sandbox”

 simpler syntax/semantics:
• untyped
• garbage-collected
• builtin associative data structures

 plays well with other languages
• e.g., LiveConnect, .NET

IMGD 4000 (D 08) 34

General Purpose Scripting Languages

But when all is said and done, it looks pretty
much like “code” to me....

e.g. Lua

function factorial(n)
 if n == 0 then
 return 1
 end
 return n * factorial(n - 1)
end

 18

IMGD 4000 (D 08) 35

General Purpose Scripting Languages

So it must be about something else...
Namely, the game development process:

 For the technical staff
• data-driven design (scripts viewed as data, not

part of codebase)
• script changes do not require game recompilation

 For the non-technical staff
• allows parallel development by designers
• allows end-user extension

IMGD 4000 (D 08) 36

General Purpose Scripting Languages

But to make this work, you need to successfully
address a number of issues:

 Where to put boundaries (APIs) between
scripted and “hard-coded” parts of game

 Performance
 Flexible and powerful debugging tools

• even more necessary than with some conventional
(e.g., typed) languages

 Is it really easy enough to use for designers!?

 19

IMGD 4000 (D 08) 37

Lua in Games

 * Aleph One (an open-source enhancement of Marathon 2: Durandal) supports Lua, and it's
been used in a number of scenarios (including Excalibur and Eternal).

 * Blobby Volley, in which bots are written in Lua.
 * Company of Heroes, a WW2 RTS. Lua is used for the console, AI, single player scripting,

win condition scripting and for storing unit attributes and configuration information.
 * Crysis, a first-person shooter & spiritual successor to Far Cry.
 * Dawn of War, uses Lua throughout the game.
 * Destroy All Humans! and Destroy All Humans! 2 both use Lua.
 * Escape from Monkey Island is coded in Lua instead of the SCUMM engine of the older titles.

The historic "SCUMM Bar" is renovated and renamed to the "Lua Bar" as a reference.
 * Far Cry, a first-person shooter. Lua is used to script a substantial chunk of the game logic,

manage game objects' (Entity system), configure the HUD and store other configuration
information.

 * Garry's Mod and Fortress Forever, mods for Half-Life 2, use Lua scripting for tools and other
sorts of things for full customization.

 * Grim Fandango and Escape from Monkey Island, both based on the GrimE engine, are two
of the first games which used Lua for significant purposes.

per Wikipedia

IMGD 4000 (D 08) 38

Lua in Games (cont’d)

 * Gusanos (Version 0.9) supports Lua Scripting for making the whole game modable.
 * Homeworld 2 uses Lua scripting for in-game levels, AI, and as a Rules Engine for game

logic.
 * Incredible Hulk: Ultimate Destruction uses Lua for all mission scripting
 * JKALua, A game modification for the game JK3: Jedi Academy.
 * Multi Theft Auto, a multi-player modification for the Grand Theft Auto video game series.

The recent adaptation for the game Grand Theft Auto San Andreas uses Lua.
 * Painkiller
 * Ragnarok Online recently had a Lua implementation, allowing players to fully customize the

artificial intelligence of their homunculus to their liking, provided that they have an Alchemist
to summon one.

 * ROBLOX is an online Lego-like building game that uses Lua for all in-game scripting.
 * SimCity 4 uses Lua for some in-game scripts.
 * Singles: Flirt Up Your Life uses Lua for in-game scripts and object/character behavior.
 * Spring (computer game) is an advanced open-source RTS engine, which is able to use Lua

for many things, including unit/mission scripting, AI writing as well as interface changes.
 * S.T.A.L.K.E.R.: Shadow of Chernobyl
 * Star Wars: Battlefront and Star Wars: Battlefront 2 both use Lua.

 20

IMGD 4000 (D 08) 39

Lua in Games (cont’d)

 * Star Wars: Empire at War uses Lua.
 * Supreme Commander allows you to edit almost all its aspects with Lua.
 * Toribash, a turn-based fighting game, supports Lua scripting.
 * Vendetta Online, a science fiction MMORPG, lets users use Lua to customize the user

interface, as well as create new commands and react to events triggered by the game.
 * Warhammer Online uses Lua.
 * The Witcher.
 * World of Warcraft, a fantasy MMORPG. Lua is used to allow users to customize its user

interface.
 * Xmoto, a free and open source 2D motocross platform game, supports Lua scripting in

levels.

IMGD 4000 (D 08) 40

The Other Path...

 A custom scripting language tied to a specific game,
which is just idiosyncratically “different” (e.g.,
QuakeC) doesn’t have much to recommend it

 However, a game-specific scripting language that is
truly natural for non-programmers can be very
effective:

 if enemy health < 500 && enemy distance < our bigrange
 move ...
 fire ...
 else
 ...
 return

(GalaxyHack)

 21

IMGD 4000 (D 08) 41

Custom Tools with Integrated Scripting

“Designer UI” from Halo 3

Next Basic AI Technique:

Minimax Search

Reference: Millington, Section 8.2

 22

IMGD 4000 (D 08) 43

Minimax Search

 Minimax is at the heart of almost every
computer board game

 Applies to games where:
• Players take turns
• Have perfect information

– Chess, Checkers, Tactics

 But can work for games without perfect
information or with chance
• Poker, Monopoly, Dice

 Can work in real-time (i.e., not turn based)
with timer (iterative deepening, later)

IMGD 4000 (D 08) 44

The Game Tree

e.g,. Tic-Tac-Toe

Note: -just showing top part of tree
 -symmetrical positions removed (optimization example)

 23

IMGD 4000 (D 08) 45

The Game Tree

 Nodes in tree represent states
• e.g., board configurations, “positions”

 Arcs are decisions that take you to a next state
• e.g., “moves”

 Technically a directed acyclic graph
• may have joins but no cycles

 Levels called plies (plural of ply)
• players alternate levels (or rotate among >2 players)

Level 0 (First Player)

Level 1 (Second Player)

Level 2 (First Player)

IMGD 4000 (D 08) 46

Naive Approach

1. Exhaustively expand tree
• naive because tree may be too big
• e.g., chess

– typical board position has ~35 legal moves
– for 40 move game, 3540 > number atoms in universe

2. Choose next move on a path that leads to
your winning
• assumes your opponent is going to cooperate

and “let” you win
• on his turn, he most likely will choose the worst

case for you!

 24

IMGD 4000 (D 08) 47

Minimax Approach

 assume both/all players play to the best of their
ability

 define a scoring method (see next)
 from the standpoint of a given player (let’s call

him “Max” ):
• choose move which takes you to the next state with

highest expected score (from your point of view)
• assuming the other player (let’s call her “Min-nie” )

will on her move choose the next state with the
lowest score (from your point of view)

IMGD 4000 (D 08) 48

(Static) Evaluation Function

 assigns score to given state from point of
view of given player
• scores typically integers in centered range

– e.g., [-100,+100] for TTT
– e.g., [-1000,+1000] for chess

• extreme values reserved for win/lose
– this is typically the easy case to evaluate
– e.g., for first player in TTT, return +100 if board has three

X’s in a row or -100 if three O’s in a row
– e.g., checkmate for chess

• what about non-terminal states?

 25

IMGD 4000 (D 08) 49

(Static) Evaluation Function

 much harder to score in middle of the game
 score should reflect “likelihood” a player will win from

given state (board position)
 but balance of winning/losing isn’t always clear (e.g.,

number/value of pieces, etc.)
• e.g., in Reversi, best strategy is to have fewest counters in

middle of game (better board control)
• generic “local maxima” problem with all “hill climbing” search

methods

 static evaluation function is where (most) game-
specific knowledge resides

IMGD 4000 (D 08) 50

Naive Approach

1. Apply static evaluation to each next state
2. Choose move to highest scoring state

If static evaluation function were perfect, then
this is all you need to do
• perfect static evaluator almost never exists
• using this approach with imperfect evaluator

performs very badly
The solution? Look ahead!

 26

IMGD 4000 (D 08) 51

Minimax Looking Ahead

 It’s Max’s turn at the start of the game (root of the tree)
 There is only time to expand tree to 2nd ply
 Max’s static evaluation function has been applied to all leaf states
 Max would “like” to get to the the 9 point state
 But if chooses leftmost branch, Min will choose her move to get to 3

 left branch has a value of 3

5

3 4 5

3 9 4 6 75

Max

Min

Max

 If Max chooses rightmost branch, Min can choose any one of 5,
 6 or 7 (will choose 5, the minimum)

 right branch has a value of 5
 Right branch is largest (the maximum) so choose that move

IMGD 4000 (D 08) 52

Minimax “Bubbling Up Values”

 Max’s turn (root of tree)
 Circles represent Max’s turn, Squares represent Min’s turn
 Values in leaves are result of applying static evaluation function
 Red arrows represent best (local) move for each player
 Blue arrow is Max’s chosen move on this turn

 27

IMGD 4000 (D 08) 53

Minimax Algorithm
def MinMax (board, player, depth, maxDepth)
 if (board.isGameOver() or depth == maxDepth)
 return board.evaluate(player), null

 bestMove = null
 if (board.currentPlayer() == player)
 bestScore = -INFINITY
 else bestScore = +INFINITY

 for move in board.getMoves()
 newBoard = board.makeMove(move)
 score, move = MinMax(newBoard, player, depth+1, maxDepth)
 if (board.currentPlayer() == player)
 if (score > bestScore) # max
 bestScore = score
 bestMove = move
 else
 if (score < bestScore) # min
 bestScore = score
 bestMove = move

 return bestScore, bestMove

MinMax(board, player, 0, maxDepth)

Note: makeMove returns copy of board
(can also move/unmove--but don’t execute graphics!)

Note: test works for multiplayer
 case also

IMGD 4000 (D 08) 54

Negamax Version

 for common case of
• two player
• zero sum

 single static evaluation function
• returns + or - same value for given board position,

depending on player

 28

IMGD 4000 (D 08) 55

Negamax Algorithm

def NegaMax (board, depth, maxDepth)

 if (board.isGameOver() or depth == maxDepth)
 return board.evaluate(), null

 bestMove = null
 bestScore = -INFINITY

 for move in board.getMoves()
 newBoard = board.makeMove(move)
 score, move = NegaMax(newBoard, depth+1, maxDepth)
 score = -score
 if (score > bestScore)
 bestScore = score
 bestMove = move

 return bestScore, bestMove

NegaMax(board, 0, maxDepth)

IMGD 4000 (D 08) 56

Pruning Approach

 Minimax searches entire tree, even if in some cases it
is clear that parts of the tree can be ignored (pruned)

 Example:
• You won a bet with your enemy.
• He owes you one thing from a collection of bags.
• You get to choose the bag, but your enemy chooses the thing.
• Go through the bags one item at a time.

– First bag: Sox tickets, sandwich, $20
– He’ll choose sandwich
– Second bag: Dead fish, …
– He’ll choose fish.
– Doesn’t matter what the rest of the items in this bag are ($500,

Yankee’s tickets …)
– No point in looking further in this bag, since enemy’s dead fish is

already worse than sandwich

 29

IMGD 4000 (D 08) 57

Pruning Approach

 In general,
 Stop processing branches at a node when you find

find a branch worse than result you already know you
can achieve

 This type of pruning saves processing time without
affecting final result
• i.e., not a “heuristic” like the evaluation function in A*

IMGD 4000 (D 08) 58

Pruning Example

• From Max’s point of view, 1 is already lower than 4, which he
knows he can achieve, so there is no need to look farther at
sibling branches

• Note that there might be large subtrees below nodes labeled
2 and 3 (only showing the top part of tree)

 30

IMGD 4000 (D 08) 59

Alpha-Beta Pruning

 Keep track of two scores:
• Alpha – best score by any means

– Anything less than this is no use (can be pruned) since we can
already get alpha

– Minimum score Max will get
– Initially, negative infinity

• Beta – worst-case scenario for opponent
– Anything higher than this won’t be used by opponent
– Maximum score Min will get
– Initially, infinity

 As recursion progresses, the "window" of Alpha-Beta
becomes smaller
• (Beta < Alpha)  current position not result of best play and

can be pruned

IMGD 4000 (D 08) 60

Alpha-Beta NegaMax Algorithm
def ABNegaMax (board, depth, maxDepth, alpha, beta)

 if (board.isGameOver() or depth == maxDepth)
 return board.evaluate(player), null

 bestMove = null
 bestScore = -INFINITY

 for move in board.getMoves()
 newBoard = board.makeMove(move)
 score, move = ABNegaMax(newBoard, maxDepth, depth+1,
 -beta,
 -max(alpha, bestScore))
 score = -score
 if (score > bestScore)
 bestScore = score
 bestMove = move

 # early loop exit (pruning)
 if (bestScore >= beta) return bestScore, bestMove

 return bestScore, bestMove

ABNegaMax(board, player, maxDepth, 0, -INFINITY, INFINITY)

 31

IMGD 4000 (D 08) 61

Move Order

 Benefits of pruning depend heavily on order
in which branches (moves) are visited
• for example, if branches visited right to left above

no pruning happens!
• for chess, on average reduce 35 branches -> 6

– allows search twice as deep!

IMGD 4000 (D 08) 62

Move Order

 Can we improve branch (move) order?
• apply static evaluation function at intermediate

nodes and check best first
– logical idea
– can improve pruning
– but may effectively give up depth of search advantage (in

fixed time interval) due to high cost of function evalution

• better idea: use results of previous minimax
searches

– “negascout” algorithm (extra credit, see Millington 8.2.7)

 32

IMGD 4000 (D 08) 63

Chess Notes

 Chess has many forced tactical situations
• e.g., “exchanges” of pieces
• minimax may not find these
• add cheap check at end of turn to check for

immediate captures
 Library of openings and/or closings
 Use iterative deepening

• search 1-ply deep, check time, search 2nd ply, ..

IMGD 4000 (D 08) 64

Chess Notes

 Static evalution function
• typically use weighted function

– c1*material + c2*mobility + c3*kingSafety + ...

• simplest is point value for material
– pawn 1, knight 3, bishop 3, castle 3, queen 9

• see references in homework instructions
• checkmate is worth more than rest combined
• what about a draw?

– can be good (e.g., if opponent strong)
– can be bad (e.g., if opponent weak)
– adjust with “contempt factor” (above or below zero)

 33

Next Basic AI Technique:

Pathfinding

References: Buckland, Chapter 5, 8
 Millington, Chapter 4

IMGD 4000 (D 08) 66

A* Pathfinding Search

 Covered in IMGD 3000
 Review below if needed

References: Buckland, Chapter 5 (pp. 241-247)
 Millington, Section 4.3

 34

IMGD 4000 (D 08) 67

Practical Path Planning

 Just raw A* not enough
 Also need:

• navigation graphs
– points of visibility (POV)
– navmesh

• path smoothing
• compute-time optimimzations
• hierarchical pathfinding
• special case methods

IMGD 4000 (D 08) 68

Navigation Graph Construction

 Tile (cell) based
• very common, esp. if env’t already designed in

squares or hexagons
• each cell already labelled with material (mud, etc.)
• downside:

– modest 100x100 cell map
– 10,000 nodes and 78,000 edges
– can burden CPU and memory, especially if multiple AI’s

calling in

Rest of presentation is a survey about how to
do better...

 35

IMGD 4000 (D 08) 69

Point of Visibility (POV) Navigation Graph

 Place graph nodes (usually by hand) at
important points in env’t

 Such that each node has line of sight to at
least one other node

IMGD 4000 (D 08) 70

NavMesh

 network of convex polygons
 very efficient to search
 can be automatically generated from polygons
 becoming very popular

 36

IMGD 4000 (D 08) 71

POV Navigation

• find closest visible node (a) to current location
• find closest visible node (b) to target location
• search for least cost path from (a) to (b)
• move to (a)
• follow path to (b)
• move to target location

IMGD 4000 (D 08) 72

POV Navigation

 Obvious how to build and expand
 Downsides

• can take a lot of developer time, especially if
design is rapidly evolving

• problematic if random or user generated maps
• can have “blind spots”
• can have “jerky” paths

 Solutions
• automatically generate POV graph from polygons
• make finer grained graphs
• smooth paths

 37

IMGD 4000 (D 08) 73

Automatic POV by Expanded Geometry

1. expand geometry by
amount proportional
to bounding radius of
agents

2. add vertices to graph
3. prune non line of

sight points

IMGD 4000 (D 08) 74

Blind Spots in POV

 No POV point is visible from red spots!
 Easy to fix manually in small graphs
 A problem in larger graphs
Solution: finely grained graphs

 38

IMGD 4000 (D 08) 75

Finely Grained Graphs

 Improves blind spots and path smoothness
 Typically generate automatically using “flood

fill”

IMGD 4000 (D 08) 76

Flood Fill

• same algorithm as
in “paint” programs

 39

IMGD 4000 (D 08) 77

Path Finding in Finely Grained Graph

 use A* or Dijkstra depending on whether
looking for one or multiple targets

IMGD 4000 (D 08) 78

Kinky Paths

The solution: Path smoothing

 40

IMGD 4000 (D 08) 79

Simple Smoothing Algorithm

 Check for “passability” between adjacent edges

IMGD 4000 (D 08) 80

Smoothing Example

 41

IMGD 4000 (D 08) 81

Methods to Reduce CPU Overhead

shortest path table path cost table

time/space tradeoff

IMGD 4000 (D 08) 82

Hierarchical Path Planning

 reduces CPU overhead
 typically two levels, but can be more
 first plan in high-level, then refine in low-level

 42

IMGD 4000 (D 08) 83

Getting Out of Sticky Situations

• bot gets “wedged” against wall
• looks really bad!

IMGD 4000 (D 08) 84

Getting Out of Sticky Situations

 Heuristic:
• calculate the distance to bot’s current waypoint

each update step
• if this value remains about the same or

consistently increases
• then it’s probably wedged
• backup and replan

 43

IMGD 4000 (D 08) 85

Pathfinding Summary

 You would not necessarily use all of these
techniques in one game

 Only use whatever your game demands and
no more

IMGD 4000 (D 08) 86

Basic Game AI Summary

 Decision-making techniques commonly used
in almost all games

– decision trees
– (hierarchical) state machines
– scripting
– minimax search
– pathfinding (beyond A*)
– References: Buckland 2, 5, 8; Millington 4, 5, 8

 Advanced game AI (weeks 5-6)
• used in practice, but in more sophisticated games

– autonomous movement, steering (3 lectures)
– goal-based AI in Halo 3 (2 lectures from GDC)

