
11/8/12

1

Building a Better
Battle

The Halo 3 AI Objectives
System

Damián Isla
Bungie Studios

11/8/12

2

“Big Battle” Technology

Scalable perception
Flocking

Effects
Targeting groups

Encounter logic

Combat dialogue

Mission dialogue

Precombat

In-game cinematics

Ambient sound

Scalable AI

“Big Battle” Technology

Scalable perception
Flocking

Effects
Targeting groups

Encounter logic

Combat dialogue

Mission dialogue

Activities

In-game cinematics

Ambient sound

Scalable AI

11/8/12

3

Encounter Design
•  Encounters are systems
•  Lots of guys
•  Lots of things to do
•  The system reacts in

interesting ways
•  The system collapses in

interesting ways

An encounter is a complicated
dance with lots of dancers

 How is this dance
 choreographed?

11/8/12

4

Choreography 101

•  The dance is about the illusion of strategic intelligence

•  Strategy is environment- story- and pacing-dependent

AI acts smart within
the confines of the
plan provided by
the designer

Designer provides
the strategic
intelligence

The Canonical Encounter
Two-stage fallback
•  Enemies occupy a territory
•  Pushed to “fallback” point
•  Pushed to “last-stand” point
•  Player “breaks” them
•  Player finishes them off

... plus a little “spice”
•  snipers
•  turrets
•  dropships

11/8/12

5

Task
The mission designers’

language for telling
the AI what it should
be doing

Halo:
•  Territory
•  Behavior

–  aggressiveness
–  rules of engagement
–  player following

Changing task moves AI around the encounter space

The Control Stack

Squad

Task

Encounter
Logic Mission-designers script

sequence of tasks

Within the task, the
AI behaves autonomously

AI engineers, AI designers

Mission designers

11/8/12

6

The Control Stack

Squad

Task

Encounter
Logic Mission-designers script

sequence of tasks

Within the task, the
AI behaves autonomously

Halo 2: The Imperative Method

11/8/12

7

The Imperative Method

< 75% alive?

< 25% alive?

Give the designers an FSM construction tool

Problems with the Imperative
Method

11/8/12

8

Problems with the Imperative
Method

Explicit transitions à n2 complexity

Generator 2 Generator 3

Generator 1

Problems with the Imperative
Method

For Halo 3:
•  Larger encounters
•  More characters
•  More open spaces
•  More avenues of attack

11/8/12

9

Halo 3: The Declarative Method

The Declarative Method

The new approach:

Designers enumerate “tasks that need
doing” in the environment

Let the system figure out who should
perform them

11/8/12

10

The Declarative Method

Not without precedent

Similar to “affordances”

The Declarative Method

Tasks have structure

•  Relative priorities
–  “The most important thing is

to guard the door, but if you
can, also guard the hallway”

•  Are made up of sub-tasks
–  “Guarding the hallway

means guarding the front,
the middle and the rear of
the hallway.”

11/8/12

11

Task Trees?

Generator 2 Generator 3

Generator 1

Task Trees

24 guys

root fallback

forward

laststand

fallback

forward

laststand

fallback

forward

laststand

generator 2

generator 3

generator 1

8

8

8

8
0
0

8
0
0

8
0
0

11/8/12

12

Halo 3 AI Objectives System
The structure:
•  A Tree of Prioritized Tasks
•  Tasks are self-describing

–  priority
–  activation script-fragments
–  capacities

The Algorithm:
•  Pour squads in at the top
•  Allow them to filter down to the most

important tasks to be filling RIGHT NOW

Basically, it’s a plinko machine.

The Dynamic Plinko Machine

•  Tasks turn themselves on
and off

•  Squads pulled UP, on
activation of a higher-
priority task

•  Squads pushed DOWN,
on deactivation of the task
they’re in

11/8/12

13

g3 laststand

3 Generators
Revisited

g1_group g1 alive max 10

root

g1 forward >75%

g1 fallback >50%

g2_group g2 alive max 10

g2 fallback >50%

g2 forward >75%

g3_group g3 alive max10

g3 fallback >50%

g3 forward >75%

g1 laststand

g2 laststand

g1_group g1 alive max 10

root

g2_group g2 alive max 10

g2 fallback >50%

g2 forward >75%

g3_group

g3 alive max10

g1 forward >75%

g1 fallback >50%

g1 laststand

g2 laststand

g3 fallback >50%

g3 forward >75%

g3 laststand

Designer UI

•  Integration with HaloScript
•  Run-time feedback

11/8/12

14

The Algorithm
•  Consider a subtree fragment
•  Determine which children are active

–  Squads in inactive tasks assigned back
up to parent

•  Consider top priority group
•  Collect squads to attempt to

distribute
–  Squads currently in parent
–  Squads in lower-priority tasks

•  Distribute Squads
•  Recurse for children in top priority-

group
•  Iterate to next “priority group”

Filters
Particular tasks only available to particular kinds of

guys

E.g.

–  Must be of character type X
–  Must be in vehicles
–  Must NOT be in vehicles
–  Snipers

“Filters”
•  Specify occupation conditions (as opposed to activation

conditions)
•  Helpful for the “spice”

11/8/12

15

Further Task Refinements
Activation behavior
•  Latch on
•  Latch off / exhaustion

Exhaustion behavior
•  Death count
•  Living count

Assignment behavior
•  One-time assignment

All of these were designer requests

Case Study:
Leadership

Want to have leaders and

followers
•  Brute and three grunts
•  Brute Chieftan and brute

pack

Gameplay
•  Leaders provide structure to

encounter
•  Leader death “breaks”

followers

11/8/12

16

Case Study: Leadership

Two Parts:

1.  Leadership-based filters

–  Core task: “leader” filter
–  Peripheral tasks: “NO leader” filter

2.  Task “broken” state (leader dead)
–  Task does not allow redistribution in or out while

broken
–  NPCs have “broken” behaviors

Summaries

11/8/12

17

Production Summary
•  The Goal: provide a powerful tool for designers to control

strategy-level decision-making for a large group of
characters

•  Flexible enough to incorporate plenty of designer-
requested features / modifications

•  Great for Prototyping
–  became much more complicated as we neared shippable

encounter state

•  One-stop-shop for encounter construction

•  Design of the system driven from the UI outwards

Technique Summary

•  Declarative approaches are great
–  less direct control, more manageability

•  Hierarchies are great
–  more modular
–  better scalability

11/8/12

18

Badness Summary

•  Requires designer training

•  Sometimes awkward relationship between scripting
system and Objectives

•  Tying together allied and enemy “fronts” was
complicated.

•  The squad wasn’t always the best level at which to
do the bucketing
–  e.g. give a guy a sniper rifle ... shouldn’t he then be

allowed to occupy a “sniper” task?

Summary Summary

Not a problem isolated to Halo

As number of NPCs grows, these kinds of
techniques will become more and more

important

