Procedural Content
Generation

Lecture |:Introduction
Autumn 2010
IT University of Copenhagen

Julian Togelius

Friday, September 3, 2010

What is PCG in games!

® Procedural Generation: with no or limited
human intervention, algorithmically

® of Content: not NPC behaviour, not the
game engine, things that affect gameplay

® in Games: computer games, board games...
any kind of games

Friday, September 3, 2010

Game content, e.g.

Levels, tracks, maps, terrains, dungeons,
puzzles, buildings, trees, grass, fire, plots,
descriptions, scenarios, dialogue, quests,
characters, rules, boards, parameters,
camera viewpoint, dynamics, weapons,
clothing, vehicles, personalities...

Friday, September 3, 2010

History: Runtime random level
generation

* Rogue-2D

Hit=:29(29) 3tr:16(16) Gold:718 Armor 5 Exp:4-76

1980

History: Runtime random level
generation

 Tribal Trouble

2005

Civilization IV

Friday, September 3, 2010

History: Runtime random level
generation

 Dwarf Fortress-3D

2007

LEVEL VT

o
_iu]

.\.-A-'— —'-h‘..‘q’

!CTCAIg!)

.

0 }OU};’:S,)

’

..- - — A—“}

R‘"A s 40
1mwmq;ﬁ

e

Diablo

GHOVUL
TOTAL KILLES = 25

IMAUNS

mAciC

2008

Friday, September 3, 2010

JAQHBIEY! 1) , o | bW
T =) =) (=) (=) (=) (=)(=) (=)
e Ikt " ! " I
H| " _

, . Aza_...: a.

}

. S - . i 1l
,_,.._..ﬁ__..__s_s_,.,__geii_____..._E_s_siei_z

SpeedTree

Friday, September 3, 2010

Sudoku

Friday, September 3, 2010

The future...

Can we drastically cut game development
costs by creating content automatically
from designers’ intentions?

Can we create games that adapt their game
worlds to the preferences of the player?

Can we create endless games!

Can the computer circumvent or augment
limited human creativity and create new
types of games!

Friday, September 3, 2010

In general,

PCG > randomness

A taxonomy of PCG

® Online/Offline

® Necessary/Optional
® Random seeds/Parameter vectors
® Stochastic/Deterministic

® Constructive/Generate-and-test

Friday, September 3, 2010

Online/Offline

® Online: as the game is being played

® Offline: during development of the game

Friday, September 3, 2010

Necessary/Optional

® Necessary content: content the player
needs to pass in order to progress

® Optional content: can be discarded, or
bypassed, or exchanged for something else

Friday, September 3, 2010

Stochastic/
Deterministic

® Deterministic: given the same starting
conditions, always creates the same content

® Stochastic: the above is not the case

Friday, September 3, 2010

Random seeds/
Parameter vectors

® 3.k.a.dimensions of control

® Can we specify the shape of the content in
some meaningful way?

Friday, September 3, 2010

Constructive/
(Generate-and-test

® Constructive: generate the content once
and be done with it

® (Generate-and-test: generate, test for
quality, and re-generate until the content is
good enough

Friday, September 3, 2010

The Search-based
Paradigm

® A special case of generate-and-test:

® The test function returns a numeric
fitness value (not just accept/reject)

® The fitness value guides the generation of
new candidate content items

® Usually implemented through evolutionary
computation

Friday, September 3, 2010

Evolutionary
computation?

Keep a population of candidates
Measure the fitness of each candidate
Remove the worst candidates

Replace with copies of the best (least bad)
candidates

Mutate/crossover the copies

Friday, September 17, 2010

Lecture 3:
Plants and L-systems

Procedural Content Generation,Autumn 2010

Julian Togelius

(some material borrowed from Gabriela Ochoa)

Friday, September 17, 2010

Plants?

® Core feature of the natural world...
therefore of many games

® Need for believability

® |nfinitely detailed

® Similar and recognizable, but not identical
® Need for compact representation

® Need for automatic large-scale generation

Friday, September 17, 2010

SpeedTree

Friday, September 17, 2010

ty

lar

SIMil

Self-

Friday, September 17, 2010

Self-similarity

® Nature has obviously thought out some
clever way of representing complex
organisms using a compact description...

® _.permitting individual variation...

® .. .why is this relevant for us!?

Friday, September 17, 2010

L-systems

® |ntroduced by Aristid Lindenmeyer 1968, to
model plant development

® Creates strings (text) from an alphabet
based on a grammar and an axiom

® Closely related to Chomsky grammars (but
productions carried out in parallel, not
sequentially)

Friday, September 17, 2010

An example L-system

® Alphabet: {a, b} |
a
® Production rules aLb
i
(grammar): b4
il L
a>ab abjl\aLb
[/ \
b>a abaababa
Ex le of a derivation i
® Axiom:b oL system

Friday, September 17, 2010

Types of L-systems

Context-free: production rules refer only
to an individual symbol

Context-sensitive: productions can depend
on the symbol’s neighbours

Deterministic: there is exactly one
production for each symbol

Stochastic: several productions for a symbol

Friday, September 17, 2010

A graphical interpretation
of L-systems

® |nvented/popularized by Prusinkiewicz 1986

® Core idea: interpret generated strings as
instructions for a turtle in turtle graphics

® Read the string from left to right, changing
the state of the turtle (x, y, heading)

Friday, September 17, 2010

Example
graphical L-system

Alphabet: {F f, +, -}
F: move the turtle forward (drawing a line)
f: move the turtle forward (don’t draw)

+/-: turn right/left (by some angle)

Friday, September 17, 2010

Graphical L-system

o axiom: F+F+F+F 5%

® grammar: B f

F>F+F-F-FF+F+F-F %g
n=|

® Turning angle: 90°

4
: gw?

§

£
oS

[l
N

n=0 n

Bracketed L-systems

® Alphabet:{Ff, +,-[,]}

® [:push the current state (X, Y, heading of the
turtle) onto a pushdown stack

®]:. pop the current state of the turtle and
move the turtle there without drawing

® Enables branching structures!

Friday, September 17, 2010

Bracketed L-systems

® Axiom:F
® Grammar: F>F[-F]F[+F][F]
® Turning angle: 30°

n=1..5

3D graphics

® Turtle graphics L-system interpretation can
be extended to 3D space:

® Represent state as X, Y, z and pitch, roll, yaw
® + -:turn (yaw) left/right
® &, " pitch down/up

® \ /:roll left/right (counterclockwise/
clockwise)

Friday, September 17, 2010

Ion

3D interpretat

Friday, September 17, 2010

3D interpretation
of bracketed L-systems

Friday, September 17, 2010

2D
L-systems

Axiom: A

Rules: A B
A .
B| A
Al A
B >
B| B
Two Expansions:
N Al B
—_—
B|A
A|B|A] A
B|/A|B|B
AAA|B
B|B|B| A

Friday, September 17, 2010

Terrain interpretation
of 2D L-systems

® Each group of four letters is interpreted as
instructions for lowering or raising the
corners of a square

® eg. A=+0.5B=-0.5

Friday, September 17, 2010

Terrain interpretation
of 2D L-systems

® |n next iteration, the 2D L-system is
rewritten once, and each square is divided
Into two

® “Doubling the resolution”

Friday, September 17, 2010

Evolving L-systems

® How can we combine L-systems with
evolutionary computation!?

Friday, September 17, 2010

Evolving L-systems

® Evolving the axiom
® Evolving the grammar:

® change the shape of one or more
production rules, or

® add/remove/replace productions
® counter limits

® Evolving the interpretation:
® Evolve production probabilities

® Evolve other aspects (e.g. turning angles)

Friday, September 17, 2010

Fithess functions

® Phototropism
® Bilateral symmetry

® Proportion of branching points

Friday, September 17, 2010

Evolved L-systems

Branching
points

’
o

Phototropism

Phototropism +
Symmetry

Friday, September 17, 2010

Multiobjective Exploration
of the StarCraft Map Space

Julian Togelius, Mike Preuss,
Nicola Beume, Simon Wessing,
Johan Hagelback and Georgios N.Yannakakis

StarCraft

® C(Classic real-time
strategy game

e Korea’s unofficial
national sport

® Jwo or three player
competitive matches

® T[hree distinct races

Friday, September 24, 2010

Why generate maps!

® Give players an unlimited supply of new,
unpredictable maps

® Negates rote learning advantages

® Dynamically adapt the game to individual
players’ strengths...

® _.or to groups of players!

® Help designers generate more novel and
balanced maps

® Help them with the “boring stuff”

Friday, September 24, 2010

Traditional (constructive)
map generation

® Place features on maps according to some
heuristic

® c.g.fractals, growing islands, cellular
automata

® Hard or impossible to optimize for
gameplay properties

® Restrictions on possible content necessary
in order to ensure valid maps

Friday, September 24, 2010

Our approach:

® Direct/indirect map representations
® An ensemble of fithess functions

® Multiobjective evolution

Friday, September 24, 2010

Our approach

® Define desirable traits of RTS maps

® Operationalize these traits as fithess
functions

® Define a search space for maps

® Search for maps that satisfy the fitness
functions as well as possible, using
multiobjective evolution

® (visualize trade-offs as Pareto fronts)

Friday, September 24, 2010

Desirable traits
of an RTS map

Playability
Fairness
Skill differentiation

Interestingness

Playability
fithess functions

® Base space: minimum amount of space
around bases

® Base distance: minimum distance between
bases (via A*)

Friday, September 24, 2010

Fairness

fitness functions

® Distance from base to closest resource

® Resource ownership

® Resource safety

® Resource fairness

(b) safe resources

Friday, September 24, 2010

Skill differentiation
fitness functions

(also contribute to interestingness)

® Choke points
(narrowest width of shortest path)

® Path overlapping

Dual map
representation

® |ndirect representation: a vector of real
numbers in {0..1}

® Direct representation: a 64x64 grid
corresponding to a StarCraft map, including
impassable areas, bases, resource sites

® Genotype to phenotype mapping:
before fithess calculation

Friday, September 24, 2010

Genotype to
phenotype

® [wo or three bases, five mineral sources
and five gas wells: (phi, theta) coordinates

® Rock formations represented indirectly
using “turtle graphics”. Each formation has:

® (x,y) starting position
® probability of turning left/right

® probability of gaps (“lifting the pen™)

Friday, September 24, 2010

Evolved map

Resource fairness vs. choke points

Friday, September 24, 2010

Resource fairness vs. choke points

Friday, September 24, 2010

Three-player map

Friday, September 24, 2010

Another three-player map

Friday, September 24, 2010

Agent-based methods

® Use a number of “artificial agents” that
construct the landscape by acting on it

® Agents of different types do different jobs

® Could be more controllable than diamond-
square

® Could give rise to different types of
landscapes

Friday, September 24, 2010

Controlled Procedural
Terrain Generation
Using Software Agents

Jonathon Doran and lan Parberry

Published in IEEE TCIAIG, 2010

D&P’s five agent types

® Coastline agents
® Smoothing agents
® Beach agents

® Mountain agents

® River agents

Friday, September 24, 2010

Rules for agents

® Fach agent has a set number of “tokens” to
spend on actions

® Fach agent is allowed to see the current
elevation around it, and allowed to modify

It

® Agents don'’t interact directly

Friday, September 24, 2010

In the beginning...

...there was a vast ocean.

Then came the first coastline agent.

Friday, September 24, 2010

Coastline agents

Multiply until they cover the whole coast -
about 1000 necessary for this size maps

Move out to position themselves right at
the border of land and sea

Generate a repulsor and an attractor point

Score all neighbouring points according to
distance to repulsor and attractor points

Move to the best-scoring points, adding
land as they go along

Friday, September 24, 2010

COASTLINE-GENERATE(agent)

© 00 J O O i W N

N e T T e T e S S G S Gt
J O Ot = W N — O

then

if tokens(agent) > limait

create 2 child agents
for each child

do

child

A

child

A

child

A

«— a random seed point on parent’s border
«— 1/2 of the parent’s tokens
«— a random direction

COASTLINE-GENERATE(child)

else

for each token

do

point <+ random border point

for each point p adjacent to point

do

score p

fill in the point with the highest score

Friday, September 24, 2010

Coastline agents

Varying action sizes

Friday, September 24, 2010

Smoothing agents

® Jake random walks on

the map

® Change the elevation of

each visited point to

(almost) the mean of its

extended von Neumann

neighbourhood

Friday, September 24, 2010

Smoothing agents

SMOOTH(starting-point)

1 location < starting-point

2 for each token

3 do

4 heightiocation < weighted average of neighborhood
5 location < random neighboring point

Friday, September 24, 2010

Beach agents

® Select random position along the coast,
where coast is not too steep

® Flatten an area around this point (leaving
small variations)

® Move randomly a short direction away
from the coast, flattening the area

Friday, September 24, 2010

Beach agents

BEACH-GENERATE(starting-point)

1 location <« starting-point
2 for each token

3 do
4 if heightocation = limit
5 then
6 location < random shoreline point
7 flatten area around location
8 smooth area around location
9 inland <+ random point a short distance inland from location
10 for i < 0 to size(walk)
11 do
12 flatten area around nland
13 smooth area around inland
14 inland < random neighboring point

15 location <+ random neighboring point of location

Friday, September 24, 2010

Beach agents

Varying beach width

Friday, September 24, 2010

Mountain agents

® Start at random positions and directions

® Move forward, continuously elevating a
wedge, creating a ridge

® Turn randomly without 45 degrees from
the initial course

® Periodically offshoot “foothills”
perpendicular to movement direction

Friday, September 24, 2010

Mountain agents

MOUNTAIN-GENERATE(startingyoint)

1 location < starting-point
2 direction < random direction
3 for each token
do
elevate wedge perpendicular to direction
smooth area around location
location < next point in direction
every n-th token
do

10 direction < original-direction 4 45-degrees

© 00 J O Ot =~

Friday, September 24, 2010

Mountain agents

Ped 30 = E)E W Hed 30

Narrow versus wide features

Friday, September 24, 2010

River agents

Move from a random point on the coast
towards a random point on a mountain
ridge

“Wiggle” along the path
Stop when reaching too high altitudes

Retrace the path down to the ocean,
deepening a wedge along the path

Friday, September 24, 2010

River agents

RIVER-GENERATE()

coast < random point on coastline
mountain < random point at base of a mountain
point «— coast
while point not at mountain
do
add point to path
point < next point closer to mountain
while point not at coast
do
flatten wedge perpendicular to downhill direction
smooth area around point
point < next point in path

© 00 ~J O O i W N

—_
N — O

Friday, September 24, 2010

River agents

A dry river, and the outflow of three rivers

Friday, September 24, 2010

In what order?

® Doran and Parberry suggest
® Coastline
® |[andform
® Erosion

® But the “Implementation” suggests random
order

Friday, September 24, 2010

Further questions

® Parameters... what parameters?

® What features of landscapes do we want to
be able to specify?

® How can the human and the algorithm
interact productively?

Friday, September 24, 2010

Lecture 6:
Rules and mechanics

Procedural Content Generation,Autumn 2010

Julian Togelius

Salen and Zimmermann
define games:

“A game is a system in
which players engage
in an artificial conflict,
defined by rules, that
results in a —

quantifiable outcome™

Can we create game
rules automatically?

If so, which types of rules?
For which types of games!?
How would we represent them!?

How would we judge how good a set of
rules is?

And why would we do this?

Challenges

® How to represent game mechanics
® Representation should be complete
® Most games should make sense (?)
® High locality (?)
® Human-readable/editable (?)

® How to search the space

® How to evaluate the games

Friday, October 8, 2010

Automatic generation
of recombination games

Cameron Browne

PhD Thesis, 2008
|EEE TCIAIG, 2010

“Combinatorial games”

® Finite: produce a well-defined outcome.

® Discrete: turn-based.

® Deterministic: chance plays no part.

® Perfect information: no hidden information.

® [wo-player.

Friday, October 8, 2010

The Ludi Game
Description Language

® |n practice limited to board games

® [udeme: Fundamental units of independently
transferable game information (“game
meme”’

® (tiling square)

® (size 3 3)

Tic-Tac-Toe

(game Tic-Tac-Toe
(players White Black)
(board
(tiling square 1-nbors)
(size 3 3)
)
(end (All win (in-a-row 3)))

)

(size 3 3) vs (size 3 3 3)

)

QOO

Game (*.gdl)

The Ludi system

Rules

> Parser

....................

Game
Description
Language

. .
...................

User Interface < Strategy)%»Policy
¢ Game Play s :
Object .:,-—F@ < Criticism)f»Aesthetlc score

.. o
.. .«
e ee e

General Game Player (Synthesis)—» New games
: (*.gdD)

Friday, October 8, 2010

Evaluating a game

® Play the game (both player use same
algorithm, with optimized board evaluation)

® Measure various aesthetic criteria: aspects of
how the game is played, of the ruleset, and
of the outcomes

® Combine the scores into a fithess value
somehow

Friday, October 8, 2010

Aesthetic criteria

® |6 Intrinsic: based on rules and equipment
® || Viability: based on game outcomes

® c.g.completion, duration
® 30 Quality: based on trends in play

® c.g.drama, uncertainty

Friday, October 8, 2010

2 X : Select Parents
Evaluate P-i owe Jeh Gags ROh, B30 > | e o,
1 o d *e o : . %’
: L .
" L
... | & . ,.‘.,
..0 0: o C.Q‘jé) L] P

‘. <
"""""""

Drawish?

/ Bln

Y Mutate
Y N

Choose | o N / Too < Y Vel Rule Check

Policy W Bapuise W

Friday, October 8, 2010

Yavalath

(game Yavalath
(players White Black)
(board (tiling hex) (shape hex) (size 5))
(end
(All win (in-a-row 4))
(All lose (and (in-a-row 3) (not (in-a-row 4))))
)
)

Friday, October 8, 2010

Combining human and
computer creativity

Procedural Content Generation,Autumn 2010

Julian Togelius

Who creates
a game’s content!

® The designer(s)/developer(s)?
® A computer-implemented algorithm!?

® The players!?

PCG and authorship

® How can we combine a human designer’s
authorial control and expressive ability with

PCG capabilities!?
® Dimensions of control
® Ease of use

® Multi-level editing / two-way flow of
control

Friday, October 29, 2010

Integrating procedural
generation and manual
editing of virtual worlds

Ruben Smelik, Tim Tutenel,
Klaas Jan de Kraker and Rafael Bidarra

FDG Workshop on PCG, 2010

Sketchaworld framework

Goals:

® |ncrease designers’ productivity while
retaining creative control

® Provide intuitive way of working with PCG
algorithms for non-experts

® Provide framework in which to integrate
new PCG research

Friday, October 29, 2010

Declarative modelling

® Designers state their intent (what they
want) instead of method (how to get it)

® Procedural sketching:“paint” with PCG
tools

® Consistency maintenance through a GIS-
inspired system of layers

Friday, October 29, 2010

Declarative modelling

D
D
3 & sketched relevant nearby features
E = features procedural «€----------------
S s —>» generation >
3 3 .
§ § ; generated terrain feature(s) Urban layer
[. generated
-, ' terrain Road layer
procedural sketching , feature(s)
' Vegetation layer
manual M
edits affected features W
PO (105 2 ter layer
consistency | <€ a
— > maintenance >
modifications to features Earth layer
manual refinin
g < > |
user control update layered virtual world update 3D virtual world

Friday, October 29, 2010

(d) (e) (f)

Figure 2: Results of an example procedural sketching session: a) sketch of a natural environment b) road
sketched through the valley from east to south, crossing the river c) city outlined on a hill d) resulting natural
landscape e) river crossing with bridge f) resulting city on the hills.

Friday, October 29, 2010

Manual editing

® Coarse level: mountain ranges, rivers, cities.
Heavily dependent on procedural
generation.

® Medium level: city districts, parks, roads.
Procedural generation useful.

® Fine level:individual objects (houses, trees).
Little or no procedural generation.

® Micro level: meshes, textures

Friday, October 29, 2010

Open issues

® Preserving manual changes
® Balance control and consistency

® |terative modeling workflow and edit
history (recreate previous actions!?)

Friday, October 29, 2010

the death of level designer

seriously ?

Runtime random level generation

* What is missing?

— Creating fully 3D world spaces, including
bridges, archways, towers,..

Design of Level Content

 PCG is used as a mechanism for
minimizing the cost of content creation.

* Only? Any other reasons?

Dynamic World Generation

* Used when in-game map exceeds the
ability of the computer to store it.

« Use a constant seed number.

* Impossible to implement roads and rivers
— Why not?

Procedural Puzzle and Plot-
generation

* Prevents the user from getting the
information off from a game FAQ

* Gives infinite number of ways of solving a
puzzle

* Non-linear sandbox design

Where PCG will move?

* The real strength of PCG will be seen in
procedural generation of plot and narrative
content

* The greatest challenge of PCG will be to
augment or replace human intelligence in
the creation of meaningful narrative

* The one area that random map generation
IS missing is complex 3D topology
generation

Where PCG will move?

Traditional level design will adopt more
PCG functions

Games that do PCG will do much better in
the marketplace

PCG will continue to eat away at the
bottom end

Middleware developers will get on board
with PCG

