ey
_

Basic Game Al

Technical Game Development Il

Professor Charles Rich
Computer Science Department
rich@wpi.edu

With material from: Millington and Funge, Artificial Intelligence for
Games, Morgan Kaufmann 2009. (Chapter 5)

IMGD 4000 (B 12) 1

Definitions?

= What is artificial intelligence (Al) ?
e subfield of computer science ?
e subfield of cognitive science ?

= What is “Al for Games” ?

e versus “academic Al" ?
In games, everything (including the Al) is in service of the
player’s experience (“fun”)

 What does it mean for a game Al to “cheat™?

Resources: introduction to Buckland, www.gameai.com,
aigamedev.com, www.aiwisdom.com, www.aidgames.org

IMGD 4100, B? Term 2013

RN D [
&)Y/ 21 mGD 4000 (B 12)

What’s the Al part of a game?

= Everything that isn’t graphics (sound) or
networking... ©

e or physics (though sometimes lumped in)
 usually via the non-player characters

e but sometimes operates more broadly, e.qg.,
— Civilization-style games (sophisticated simulations)

— interactive storytelling (drama control)

/‘:",. o ¢

(N O |
&) VY21 mcD 4000 (B 12)

“Levels” of Game Al

= Basic

e decision-making techniques commonly used in
almost all games

= Advanced

e used Iin practice, but in more sophisticated games

= future

e not yet used, but explored in research

K7D,
&) VY21 mcD 4000 (B 12)

This course

= Basic game Al

e decision-making technigues commonly used in
almost all games
— basic pathfinding (A*) (IMGD 3000)
— decision trees (today)
— (hierarchical) state machines (foday)

= Advanced game Al

e used in practice, but in more sophisticated games
— advanced pathfinding (next Thurs)
— behavior trees (in Halo 3) (next Fri)

FBINR Pl
A7) v/ L IMGD 4000 (B 12)

Future Game Al ?

= Take IMGD 4100 in 2013 (B?) [alt yr course]
“Al for Interactive Media and Games”

e fuzzy logic
* more goal-driven agent behavior

= Take CS 4341 “Artificial Intelligence”

e machine learning
e planning

SITNONTE §

&) VY21 mcD 4000 (B 12)

Two Fundamental Types of Al Algorithms

= Non-Search vs. Search
 Non-Search: amount of computation is predictable
— e.g., decision trees, state machines

e Search: upper bound depends on size of search space
(often large)
— e.g., minimax, planning
— scary for real-time games
— need to otherwise limit computation (e.g., threshold)

= Where's the “*knowledge™?
 Non-Search: in the code logic (or external tables)

e Search: in state evaluation and search order functions

/‘:",. O

(NN |
)%/ 21 maD 4000 (B 12) !

How about Al Middleware (“Al Engines™)?

= Rercent panel at GDC Al Summit: "Why so
wary of Al middleware?”

= Only one panelist reported completely positive
experience
o Steve Gargolinski, Blue Fang (Zoo Tycoon, etc.)
e Used Havok Behavior (with Physics)

= Most industry Al programmers still mostly write
their own Al from scratch (or reuse their own

code)
= So we are going to look at coding details

SITNONTE §

&) VY21 mcD 4000 (B 12) o

Al Coding Theme (for Basic Al)

= Use object-oriented paradigm

instead of...

= A tangle of if-then-else statements

@) VPl maD 4000 (8 12)

First Basic Al Technique:

Decision Trees

See code at:

https://qgithub.com/idmillington/aicore

src/dectree.cpp and src/demos/c05-dectree

IMGD 4000 (B 12)

10

Decision Trees

= The most basic of the basic Al techniques
= Easy to implement
= Fast execution

= Simple to understand

N // D)
\ravag! IMGD 4000 (B 12)

11

Deciding how to respond to an enemy

if visible? { visible?

if close? {

attack;
} else { audible?
if flank? {
move;
} else {
attack;
. } creep attack
1 else {
if audible? {
creep; attack move
}

}

/// Y Pl IMGD 4000 (B 12) 12

Which would you rather modify?

if visible? {
if close? {
attack;
} else if flank? {
??? move;
1 else {
attack;
}

1 else if audible? {

creep;

}

/// Y/ Pl IMGD 4000 (B 12)

creep

audible?

attack

visible?

yes

attack

move

13

O-0O Decision Trees (Pseudo-Code)

ye

no, es

class Node class Boolean : Decision
def decide() //return action yesNode
noNode

class Decision : Node class MinMax : Boolean

def getBranch() //return node minValue

def decide() maxValue
return getBranch().decide() testValue

Node def getBranch()

if maxValue >= testValue >= minValue
return yesNode

else return noNode

&)Y/ 21 mGD 4000 (B 12) "

class Action :
def decide() return this

Building an O-O Decision Tree

visible = new Boolean...
audible = new Boolean...
close = new MinMax...
flank = new Boolean...

attack = new Move...
move = new Move...
creep = new Move...

visible.yesNode = close
visible.noNode = audible

audible.yesNode = creep

close.yesNode = attack
close.noNode = flank

flank.yesNode = move
flank.noNode = attack

N /D
A7/ w/ L IMGD 4000 (B 12)

audible?

creep

attack

...or a graphical editor

move

attack

15

Modifying an O-O Decision Tree

visible = new Boolean...
audible = new Boolean...
close = new MinMax...
flank = new Boolean...
??? = new Boolean...

attack = new Move...
move = new Move. ..
creep = new Creep...

visible.yesNode = close
visible.noNode = audible

audible.yesNode = creep

close.yesNode = attack
close.noNode = 777
???.yesNode = flank

flank.yesNode = move
flank.noNode = attack

2y »/ L IMGD 4000 (B 12)

creep

audible?

attack

visible?

yes

attack

move

16

Decision Tree Performance Issues

= individual node tests (getBranch) typically
constant time (and fast)

= worst case behavior depends on depth of tree
e longest path from root to action

= roughly “balance” tree (when possible)
e not too deep, not too wide
e make commonly used paths shorter
e put most expensive decisions late o

SITNONTE §

&) VY21 mcD 4000 (B 12) .

Second Basic Al Technique:

(Hierarchical) State Machines

IMGD 4000 (B 12)

18

State Machines

|

small enem
4>[on guard} :

large enemy

escaped

A 4

e

losing fight

A[run away]<

/P IMGD 4000 (B 12)

19

Hard-Coded Implementation

class Soldier def update()
if currentState == ON_GUARD {
enum State if small enemy {
ON_GUARD currentState = FIGHT
FIGHT start Fighting
RUN_AWAY } else if big enemy {
currentState = RUN_AWAY
currentState start RunningAway
}
} else if currentState == FIGHT {
I if losing fight {
smallenerny currentState = RUN_AWAY

=1 on guard p=———--=p1 fight

start RunningAway
escaped esnoten } else if currentState == RUN_AWAY {
if escaped {

currentState = ON_GUARD

start Guarding

run away [«

}

N // DI [
) %YF1 IMGD 4000 (B 12) 20

Hard-Coded State Machines

= Easy to write (at the start)
= Very efficient

= Notoriously hard to maintain (e.g., debug)

@) VPl maD 4000 (8 12)

Cleaner & More Flexible O-O Implementation

class State
def getAction()
def getEntryAction()
def getExitAction()
def getTransitions()

class Transition
def isTriggered()
def getTargetState()
def getAction()

...add tracing

class StateMachine I -
—>lon guard ===l fight
states
initialState ;i?riy losing

escaped fight

currentState = initialState

def update() FUN QWA | ——

triggeredTransition = null

for transition 1in currentState.getTransitions() {
if transition.isTriggered() {
triggeredTransition = transition
break

}
¥

if triggeredTransition != null {
targetState = triggeredTransition.getTargetState()
actions = currentState.getExitAction()
actions += triggeredTransition.getAction()
actions += targetState.getEntryAction()
currentState = targetState
return actions

} else return currentState.getAction()

FEEINQ r
&)Y/ 21 mGD 4000 (B 12) “

Combining Decision Trees & State Machines

= Why?
e to avoid duplicating expensive tests in state
machine:

player in sight AND far { alarm]

(Cator

player in sight AND near
defend

QJ Y/ X1 IMGD 4000 (B 12) 23

Combining Decision Trees & State Machines

yes
alarm
player in sight?

[alert} j Y far?

— {defend]

@) VPl maD 4000 (8 12) 24

Hierarchical State Machines

= Why?

see trash t
’—-'[search} >[f’rgsoh]

A

\ have trash

trash disposed [goto]
\disposal

fy Y/ P IMGD 4000 (B 12)

25

Interruptions (Alarms), e.g., Recharging?

[recharg;e] [recharge]
(search (trash)

recharged l]Iow power recharged l ‘Iow power

see trash t
‘——{search} >[f’rgsoh]

A

\ have trash

trash disposed [goto]
\disposal

recharged l llow power

6 - doubled the number of states! l reCharEel
disposa

) V7P meD 4000 (B 12) 26

Add Another Interruption Type?

hide]
search/recharge
all clearl ‘ battle
I +«—{ hide
~—4 I > I «— hide
g 3 «— hide
+«— hide

12 - doubled the number of states again!

K// Y/ P iMGD 4000 (B 12)

Hierarchical State Machine

* leave any state in (composite) ‘clean’ state when ‘low power’

* ‘clean’ remembers internal state and continues when returned to from “recharged”

clean

low power .

! [recharge]

see trash oto h d \
‘——{SGBFCh} { 3aSh] recharge

A

have trash

trash disposed f goto]
| disposal

_ 1/

&)Y/ 21 mGD 4000 (B 12) “

Add Another Interruption Type?

7 states (including composite) vs. 12 { hide]
(recharge)
A
battle all clear
clean
low power . 5
I [recharge]
] see trash{ goto] recharged \
’——{search] trash
A
have trash
trash disposed [goto] battle
\disposal j 1 hide]

k / all clear R
I

() Y/ E1 mMGD 4000 (8 12) 29

Cross-Hierarchy Transitions

= Why?

e suppose we want robot to “top off” battery (even if

it isn’'t low) when it doesn’t see any trash

[IMGD 4000 (B 12)

clean

low power N
L recharge

see trash oto recharged

o——>| search > ?rash ?
y'y
l have trash
trash disposed goto
(disposal;

30

Cross-Hierarchy Transitions

no trash and less than 75% power

clean

A 4

low power .

'——{search

] see trash{ goto]

) trash

A

have trash

_

trash disposed(goto]
| disposal

<

/

&)Y/ P1 MGD 400

I

0 (B 12)

[recharge]

recharged \

31

HFSM Implementation Sketch

class State

// stack of return states
def getStates() return [this]

class HierarchicalStateMachine

// same state variables as flat machine

// complicated recursive algorithm*

// recursive update
def update()

// rest same as flat machine

class Transition

def update ()

class SubMachine : HierarchicalStateMachine,

State

def getStates()

// how deep this transition 1is
def getLevel ()

// rest same as flat machine
struct UpdateResult // returned from update
transition

level
actions // same as flat machine

/// Y/ Pl IMGD 4000 (B 12)

push this onto currentState.getStates()

*See full pseudo-code at
http://www.cs.wpi.edu/~rich/courses/
imgd4000-b12/hsm.pdf

Add tracing/debug code!!

32

