
Professor Charles Rich
Computer Science Department
rich@wpi.edu

IMGD 4000 (B 12) 1

Basic Game AI

Technical Game Development II

With material from: Millington and Funge, Artificial Intelligence for
Games, Morgan Kaufmann 2009. (Chapter 5)

IMGD 4000 (B 12) 2

Definitions?

§  What is artificial intelligence (AI) ?
•  subfield of computer science ?
•  subfield of cognitive science ?

§  What is “AI for Games” ?
•  versus “academic AI” ?

In games, everything (including the AI) is in service of the
player’s experience (“fun”)

•  What does it mean for a game AI to “cheat”?
Resources: introduction to Buckland, www.gameai.com,

aigamedev.com, www.aiwisdom.com, www.ai4games.org
 IMGD 4100, B? Term 2013

IMGD 4000 (B 12) 3

What’s the AI part of a game?

§  Everything that isn’t graphics (sound) or
networking... J

•  or physics (though sometimes lumped in)

•  usually via the non-player characters

•  but sometimes operates more broadly, e.g.,

– Civilization-style games (sophisticated simulations)

–  interactive storytelling (drama control)

IMGD 4000 (B 12) 4

“Levels” of Game AI

§  Basic
•  decision-making techniques commonly used in

almost all games

§  Advanced

•  used in practice, but in more sophisticated games

§  Future

•  not yet used, but explored in research

IMGD 4000 (B 12) 5

This course

§  Basic game AI
•  decision-making techniques commonly used in

almost all games
–  basic pathfinding (A*) (IMGD 3000)
–  decision trees (today)
–  (hierarchical) state machines (today)

§  Advanced game AI
•  used in practice, but in more sophisticated games

–  advanced pathfinding (next Thurs)
–  behavior trees (in Halo 3) (next Fri)

IMGD 4000 (B 12) 6

Future Game AI ?

§  Take IMGD 4100 in 2013 (B?) [alt yr course]
“AI for Interactive Media and Games”
•  fuzzy logic
•  more goal-driven agent behavior

§  Take CS 4341 “Artificial Intelligence”
•  machine learning
•  planning

IMGD 4000 (B 12) 7

Two Fundamental Types of AI Algorithms

§  Non-Search vs. Search
•  Non-Search: amount of computation is predictable

–  e.g., decision trees, state machines
•  Search: upper bound depends on size of search space

(often large)
–  e.g., minimax, planning
–  scary for real-time games
–  need to otherwise limit computation (e.g., threshold)

§  Where’s the “knowledge”?
•  Non-Search: in the code logic (or external tables)
•  Search: in state evaluation and search order functions

How about AI Middleware (“AI Engines”)?

§  Rercent panel at GDC AI Summit: “Why so
wary of AI middleware?”

§  Only one panelist reported completely positive
experience
•  Steve Gargolinski, Blue Fang (Zoo Tycoon, etc.)
•  Used Havok Behavior (with Physics)

§  Most industry AI programmers still mostly write
their own AI from scratch (or reuse their own
code)

§  So we are going to look at coding details

IMGD 4000 (B 12) 8

AI Coding Theme (for Basic AI)

§  Use object-oriented paradigm

instead of...

§  A tangle of if-then-else statements

IMGD 4000 (B 12) 9

First Basic AI Technique:

Decision Trees

10 IMGD 4000 (B 12)

See code at:

https://github.com/idmillington/aicore

src/dectree.cpp and src/demos/c05-dectree

IMGD 4000 (B 12) 11

Decision Trees

§  The most basic of the basic AI techniques

§  Easy to implement

§  Fast execution

§  Simple to understand

IMGD 4000 (B 12) 12

Deciding how to respond to an enemy

if visible? {
 if close? {
 attack;
 } else {
 if flank? {
 move;
 } else {
 attack;
 }
 }
} else {
 if audible? {
 creep;
 }
}

attack

move attack

creep

yes

visible?

flank?

close? audible? no
yes

yes

yes

no

no

no

if visible? {
 if close? {
 attack;
 } else {
 if flank? {
 move;
 } else {
 attack;
 }
 }
} else {
 if audible? {
 creep;
 }

if visible? {
 if close? {
 attack;
 } else if flank? {
 move;
 } else {
 attack;
 }
} else if audible? {
 creep;
}

IMGD 4000 (B 12) 13

Which would you rather modify?

attack creep

yes

visible?

close? audible? no
yes

yes

no

no

move attack

flank?

yes no

???
???

yes

IMGD 4000 (B 12) 14

O-O Decision Trees (Pseudo-Code)

class Node
 def decide() //return action

class Boolean : Decision
 yesNode
 noNode

class MinMax : Boolean
 minValue
 maxValue
 testValue

 def getBranch()
 if maxValue >= testValue >= minValue
 return yesNode
 else return noNode

yes

no
yes

yes

yes

no

no

no

class Decision : Node

 def getBranch() //return node

 def decide()
 return getBranch().decide()

class Action : Node
 def decide() return this

IMGD 4000 (B 12) 15

Building an O-O Decision Tree

visible = new Boolean...
audible = new Boolean...
close = new MinMax...
flank = new Boolean...

attack = new Move...
move = new Move...
creep = new Move...

visible.yesNode = close
visible.noNode = audible

audible.yesNode = creep

close.yesNode = attack
close.noNode = flank

flank.yesNode = move
flank.noNode = attack
...

attack

move attack

creep

yes

visible?

flank?

close? audible?
no

yes
yes

yes

no

no

no

...or a graphical editor

IMGD 4000 (B 12) 16

Modifying an O-O Decision Tree

visible = new Boolean...
audible = new Boolean...
close = new MinMax...
flank = new Boolean...
??? = new Boolean...

attack = new Move...
move = new Move...
creep = new Creep...

visible.yesNode = close
visible.noNode = audible

audible.yesNode = creep

close.yesNode = attack
close.noNode = ???
???.yesNode = flank

flank.yesNode = move
flank.noNode = attack
...

attack creep

yes

visible?

close? audible? no
yes

yes

no

no

move attack

flank?

yes no

???

yes

IMGD 4000 (B 12) 17

Decision Tree Performance Issues

§  individual node tests (getBranch) typically
constant time (and fast)

§  worst case behavior depends on depth of tree
•  longest path from root to action

§  roughly “balance” tree (when possible)
•  not too deep, not too wide
•  make commonly used paths shorter
•  put most expensive decisions late

yes

no
yes

yes

yes

no

no

no

Second Basic AI Technique:

(Hierarchical) State Machines

18 IMGD 4000 (B 12)

IMGD 4000 (B 12) 19

State Machines

on guard

run away

fight
small enemy

large enemy
losing fight escaped

IMGD 4000 (B 12) 20

Hard-Coded Implementation

class Soldier

 enum State
 ON_GUARD
 FIGHT
 RUN_AWAY

 currentState

 def update()
 if currentState == ON_GUARD {
 if small enemy {
 currentState = FIGHT
 start Fighting
 } else if big enemy {
 currentState = RUN_AWAY
 start RunningAway
 }
 } else if currentState == FIGHT {
 if losing fight {
 currentState = RUN_AWAY
 start RunningAway
 }
 } else if currentState == RUN_AWAY {
 if escaped {
 currentState = ON_GUARD
 start Guarding
 }
 }

on guard

run away

fight
small enemy

large enemy
losing fight

escaped

IMGD 4000 (B 12) 21

Hard-Coded State Machines

§  Easy to write (at the start)

§  Very efficient

§  Notoriously hard to maintain (e.g., debug)

IMGD 4000 (B 12) 22

Cleaner & More Flexible O-O Implementation
class State
 def getAction()
 def getEntryAction()
 def getExitAction()
 def getTransitions()

class Transition
 def isTriggered()
 def getTargetState()
 def getAction()

class StateMachine

 states
 initialState
 currentState = initialState

 def update()

 triggeredTransition = null

 for transition in currentState.getTransitions() {
 if transition.isTriggered() {
 triggeredTransition = transition
 break
 }
 }
 if triggeredTransition != null {
 targetState = triggeredTransition.getTargetState()
 actions = currentState.getExitAction()
 actions += triggeredTransition.getAction()
 actions += targetState.getEntryAction()
 currentState = targetState
 return actions
 } else return currentState.getAction()

...add tracing

on guard

run away

fight
small
enemy

large
enemy losing

fight escaped

IMGD 4000 (B 12) 23

Combining Decision Trees & State Machines

§  Why?
•  to avoid duplicating expensive tests in state

machine:

alert

defend

alarm player in sight AND far

player in sight AND near

IMGD 4000 (B 12) 24

Combining Decision Trees & State Machines

alert

defend

alarm

player in sight?

far?

yes

yes

no

no

IMGD 4000 (B 12) 25

Hierarchical State Machines

§  Why?

search

goto
disposal

goto
 trash

see trash

trash disposed

have trash

IMGD 4000 (B 12) 26

Interruptions (Alarms), e.g., Recharging?

search

goto
disposal

goto
 trash

see trash

trash disposed

have trash

recharge

low power recharged

recharge

low power recharged

recharge

low power recharged

(search) (trash)

(disposal)
6 - doubled the number of states!

IMGD 4000 (B 12) 27

Add Another Interruption Type?

12 - doubled the number of states again!

hide

battle all clear

(search/recharge)

hide

hide

hide

hide
hide

IMGD 4000 (B 12) 28

Hierarchical State Machine

search

goto
disposal

goto
 trash

see trash

trash disposed

have trash

clean

recharge
low power

recharged

•  leave any state in (composite) ‘clean’ state when ‘low power’

•  ‘clean’ remembers internal state and continues when returned to from “recharged’’

IMGD 4000 (B 12) 29

Add Another Interruption Type?

search

goto
disposal

goto
 trash

see trash

trash disposed

have trash

clean

recharge
low power

recharged

hide
battle

all clear

7 states (including composite) vs. 12

battle all clear

hide
(recharge)

(clean)

IMGD 4000 (B 12) 30

Cross-Hierarchy Transitions

§  Why?
•  suppose we want robot to “top off” battery (even if

it isn’t low) when it doesn’t see any trash

search

goto
disposal

goto
 trash

see trash

trash disposed

have trash

clean

recharge
low power

recharged

IMGD 4000 (B 12) 31

Cross-Hierarchy Transitions

search

goto
disposal

goto
 trash

see trash

trash disposed

have trash

clean

recharge
low power

recharged

no trash and less than 75% power

IMGD 4000 (B 12) 32

HFSM Implementation Sketch

class State

 // stack of return states
 def getStates() return [this]

 // recursive update
 def update()

 // rest same as flat machine

class Transition

 // how deep this transition is
 def getLevel()

 // rest same as flat machine

struct UpdateResult // returned from update
 transition
 level
 actions // same as flat machine

class HierarchicalStateMachine

 // same state variables as flat machine

 // complicated recursive algorithm*
 def update ()

class SubMachine : HierarchicalStateMachine,
 State

 def getStates()
 push this onto currentState.getStates()

*See full pseudo-code at
http://www.cs.wpi.edu/~rich/courses/
imgd4000-b12/hsm.pdf

Add tracing/debug code!!

