
1

Professor Charles Rich
Computer Science Department
rich@wpi.edu

Scripting

Technical Game Development II

IMGD 4000 (B 12) 1

References: Buckland, Chapter 6

Scripting

§  Two senses of the word in games*
•  “scripted behavior”

–  having NPCs follow pre-set actions
–  rather than choosing them dynamically

•  “scripting language”
–  using a interpreted language
–  to make the game easier to modify

§  The senses are related
•  a scripting language is good for writing scripted

behaviors (among other things)

IMGD 4000 (B 12) 2

* also “shell scripts”, which are not today’s topic

2

IMGD 4000 (B 12) 3

Scripted Behavior

§  One way of building NPC behaviors

§  What’s the other way?

§  Versus simulation-based behavior

•  e.g., goal/behavior trees

•  genetic algorithms

•  machine learning

•  etc.

Scripted vs. Simulation-Based Behavior

§  Example of scripted behavior (in combat game)
•  fixed trigger regions

– when player/enemy enters predefined area

–  send pre-specified waiting units to attack

•  doesn’t truly simulate scouting and preparedness

•  easily found “exploit”
–  mass outnumbering force just outside trigger area

–  attack all at once

IMGD 4000 (B 12) 4

3

Scripted vs. Simulation-Based Behavior

§  Non-scripted (“simulation-based”) version?
•  send out patrols

•  use reconnaissance information to influence unit
allocation

•  adapts to player’s behavior (e.g., massing of
forces)

•  can even vary patrol depth depending on stage of
the game

IMGD 4000 (B 12) 5

Advantages of Scripted Behavior

§  Much faster to execute
•  apply a simple rule versus run a complex

simulation

§  Easier to write, understand and modify
•  than a sophisticated simulation

IMGD 4000 (B 12) 6

4

Disadvantages of Scripted Behavior

§  Limits player creativity
•  players will try things that “should” work (based on

their own real-world intuitions)
•  will be disappointed when they don’t

§  Allows degenerate strategies
•  players will learn the limits of the scripts
•  and exploit them

§  Games will need many scripts
•  predicting their interactions can be difficult
•  complex debugging problem

IMGD 4000 (B 12) 7

Stage Direction Scripts

§  Controlling camera movement and “bit players”
–  create a guard at castle drawbridge
–  lock camera on guard
– move guard toward player
–  etc.

§  Better application of scripted behavior
•  doesn’t limit player creativity as much
•  improves visual experience

§  Stage direction also can be done by
sophisticated simulation
•  e.g., camera system in God of War

IMGD 4000 (B 12) 8

5

IMGD 4000 (B 12) 9

Scripting Languages

You can probably name a bunch of them:

§  custom languages tied to specific games/engines
•  UnrealScript, QuakeC, HaloScript, LSL, ...

§  general purpose languages
•  Tcl, Python, Perl, Javascript, Ruby, Lua, ...
•  the “modern” trend, especially with Lua

Often used to write scripted behaviors.

IMGD 4000 (B 12) 10

Custom Scripting Languages

§  A custom scripting language tied to a specific game,
which is just idiosyncratically “different” (e.g.,
QuakeC) doesn’t have much to recommend it

§  However, a game-specific scripting language that is
truly natural for non-programmers can be very
effective:

 if enemy health < 500 && enemy distance < our bigrange
 move ...
 fire ...
 else
 ...
 return

(GalaxyHack)

6

IMGD 4000 (B 12) 11

Custom Languages and Tools

“Designer UI” from Halo 3

IMGD 4000 (B 12) 12

General Purpose Scripting Languages

What makes a general purpose scripting language different
from any other programming language?

§  interpreted (byte code, virtual machine)
•  technically a property of implementation (not language per se)
•  faster development cycle
•  safely executable in “sandbox”
•  recently JIT native compilation also
 (see http://www.mono-project.com/Scripting_With_Mono)

§  simpler syntax/semantics:
•  untyped
•  garbage-collected
•  builtin associative data structures

§  plays well with other languages
•  e.g., LiveConnect, .NET, Lua stack

7

IMGD 4000 (B 12) 13

General Purpose Scripting Languages

But when all is said and done, it looks pretty
much like “code” to me....

e.g. Lua

 function factorial(n)

 if n == 0 then
 return 1
 end
 return n * factorial(n - 1)
end

So it must be about something else...

Now go back in time...

To the world of C++ engines....

IMGD 4000 (B 12) 14

8

IMGD 4000 (B 12) 15

Scripting Languages in Games

So it must be about something else...
Namely, the game development process:

§  For the technical staff
•  data-driven design (scripts viewed more as “data,”

not part of codebase)
•  script changes do not require game recompilation

§  For the non-technical staff
•  allows parallel development by designers
•  allows end-user extension

A Divide-and-Conquer Strategy

§  implement part of the game in C++
•  the time-critical inner loops

•  code you don’t change very often

•  requires complete (often very long) rebuild for each
change

§  and part in a scripting language
•  don’t have to rebuild C++ part when change scripts

•  code you want to evolve quickly (e.g, NPC behaviors)

•  code you want to share (with designers, players)

•  code that is not time-critical (can migrate to C++ later)
 IMGD 4000 (B 12) 16

9

IMGD 4000 (B 12) 17

General Purpose Scripting Languages

But to make this work, you need to successfully
address a number of issues:

§  Where to put boundaries (APIs) between
scripted and “hard-coded” parts of game

§  Performance
§  Flexible and powerful debugging tools

•  even more necessary than with some conventional
(e.g., typed) languages

§  Is it really easy enough to use for designers!?

Most Popular Game Scripting Language?

§  Lua
§  Has come to dominate other choices

•  Powerful and fast

•  Lightweight and simple

•  Portable and free

§  See http://lua.org

IMGD 4000 (B 12) 18

10

117
Lua-scripted

Games

(Wikipedia)

19

Lua Language Data Types

§  Nil – singleton default value, nil
§  Number – internally double (no int’s!)

§  String – array of 8-bit characters

§  Boolean – true, false
Note: everything except nil coerced to false!, e.g., “”, 0

§  Function – unnamed objects

§  Table – key/value mapping (any mix of types)

§  UserData – opaque wrapper for other languages

§  Thread – multi-threaded programming (reentrant code)

IMGD 4000 (B 12) 20

11

Lua Variables and Assignment

§  Untyped: any variable can hold any type of
value at any time

A = 3;
A = “hello”;

§  Multiple values
•  in assignment statements

 A, B, C = 1, 2, 3;
•  multiple return values from functions
 A, B, C = foo();

IMGD 4000 (B 12) 21

“Promiscuous” Syntax and Semantics

§  Optional semi-colons and parens
 A = 10; B = 20;
 A = 10 B = 20

 A = foo();
 A = foo

§  Ignores too few or too many values
 A, B, C, D = 1, 2, 3
 A, B, C = 1, 2, 3, 4

§  Can lead to a debugging nightmare!
§  Moral: Only use for small procedures

IMGD 4000 (B 12) 22

12

Lua Operators

§  arithmetic: + - * / ^
§  relational: < > <= >= == ~=
§  logical: and or not

§  concatenation: ..

... with usual precedence

IMGD 4000 (B 12) 23

Lua Tables

§  heterogeneous associative mappings
§  used a lot
§  standard array-ish syntax

•  except any object (not just int) can be “index” (key)
mytable[17] = “hello”;
mytable[“chuck”] = false;

•  curly-bracket constructor
mytable = { 17 = “hello”, “chuck” = false };

•  default integer index constructor (starts at 1 !!)
test_table = { 12, “goodbye”, true };
test_table = { 1 = 12, 2 = “goodbye”, 3 = true };

 IMGD 4000 (B 12) 24

13

Lua Control Structures

§  Standard if-then-else, while, repeat and for
•  with break in looping constructs

§  Special for-in iterator for tables
data = { a=1, b=2, c=3 };
for k,v in data do print(v+” “+k) end;

produces, e.g.,
a 1
c 3
b 2

(order undefined)

IMGD 4000 (B 12) 25

Lua Functions

§  standard parameter and return value syntax
 function (a, b)

 return a+b

 end

§  inherently unnamed, but can assign to variables
 foo = function (a, b) return a+b; end

 foo(3, 5) è 8

why is this important/useful?

§  convenience syntax
function foo (a, b) return a+b; end

IMGD 4000 (B 12) 26

14

Other Lua Features ...

§  object-oriented style (alternative dot/colon syntax)
§  local variables (default global)

§  libraries (sorting, matching, etc.)

§  namespace management (using tables)

§  multi-threading (thread type)

§  bytecode, virtual machine

§  features primarily used for language extension
•  metatables and metamethods

•  fallbacks

See http://www.lua.org/manual/5.2

IMGD 4000 (B 12) 27

But Lua cannot stand alone...

§  Why not?

§  Accessing Lua from C++
§  Accessing C++ from Lua

IMGD 4000 (B 12) 28

C Lua

15

Connecting Lua and C++

§  Lua virtual stack
•  bidirectional API/buffer between two environments
•  preserves garbage collection safety

§  data wrappers
•  UserData – Lua wrapper for C data
•  luabind::object – C wrapper for Lua data

IMGD 4000 (B 12) 29

C Lua

Lua Virtual Stack

§  both C and Lua env’ts
can put items on and
take items off stack

§  push/pop or direct
indexing

§  positive or negative
indices

§  current top index
(usually 0)

IMGD 4000 (B 12) 30

lua-settop

0

C Lua

16

Accessing Lua from C

IMGD 4000 (B 12) 31

C Lua

Accessing Lua Global Variables from C

§  C tells Lua to push global value onto stack
 lua_getglobal(pLua, “foo”);

§  C retrieves value from stack
•  using appropriate function for expected type
 string s = lua_tostring(pLua, 1);
•  or can check for type

 if (lua_isnumber(pLua, 1))
 { int n = (int) lua_tonumber(pLua, 1) } ...

§  C clears value from stack
 lua_pop(pLua, 1);

IMGD 4000 (B 12) 32

C Lua

17

Accessing Lua Tables from C (w. LuaBind)

§  C asks Lua for global values table
 luabind::object global_table = globals(pLua);

§  C accesses global table using overloaded [] syntax
 luabind::object tab = global_table[“mytable”];

§  C accesses any table using overloaded [] syntax and
casting
int val = luabind::object_cast<int>(tab[“key”]);

tab[17] = “shazzam”;

 IMGD 4000 (B 12) 33

C Lua

Calling Lua Functions from C (w. LuaBind)

§  C asks Lua for global values table
 luabind::object global_table = globals(pLua);

§  C accesses global table using overloaded [] syntax
 luabind::object func = global_table[“myfunc”];

§  C calls function using overloaded () syntax
int val =
 luabind::object_cast<int>(func(2, “hello”));

IMGD 4000 (B 12) 34

C Lua

18

Accessing C from Lua

IMGD 4000 (B 12) 35

C Lua

Calling C Function from Lua (w. LuaBind)

§  C “exposes” function to Lua
 void MyFunc (int a, int b) { ... }

 module(pLua) [
 def(“MyFunc”, &MyFunc)
];

§  Lua calls function normally in scripts

 MyFunc(3, 4);

IMGD 4000 (B 12) 36

C Lua
[See more details and examples in Buckland, Ch 6.]

19

So what’s all this got to do with Unity?

§  The game engine core of Unity is coded in C++...

§  Unity provides three different “scripting languages” (all
of which use same Mono byte code)
•  Javascript (a close cousin of Lua)

•  Boo (variant of Python)

•  C# (which we are using)

§  So this is the divide-and-conquer paradigm we
discussed, except that you are not allowed to
recompile the C++ part!

IMGD 4000 (B 12) 37

