Promising Al Techniques (3 of 3)

* Genetic algorithms
— Search and optimize based on evolutionary principles
— Good when “right” answer not well-understood
— E.g.—may not know best combination of Al settings. Use GA to
try out
— Often expensive, so do offline
e N-Gram statistical prediction
— Predict next value in sequence (e.g.- 1818180181 ... next will
probably be 8)
— Search backward n values (usually 2 or 3)
— Example
Street fighting (punch, kick, low punch...)
Player does low kick and then low punch. What is next?

Uppercut 10 times (50%), low punch (7 times, 35%), sideswipe (3
times, 15%)

Can predict uppercut or, proportionally pick next (e.g.- roll dice)

2/17/2012

Outline
* Introduction (done)
* Common Al Techniques (done)
* Promising Al Techniques (done)
* Pathfinding (A*) (next)
* Finite State Machines

* Summary

* Often seems obvious and
natural in real life
— E.g. Get from point Ato B
-> go around lake
¢ For a computer controlled
player, may be difficult
— E.g. Going from A to B go
through enemy base
¢ Want to pick “best” path
* Needto doitin real-time
¢ Why can’t we just figure it
out ahead of time (i.e.
before the game starts)?

Representing the Space
m _.HL] 1]

* System needs to understand
the level
— But not full information, only
relevant information (e.g. is it
passable, not water vs. lava vs.
tar...)
* Common representations
— 2d Grid
* Each cell passable or impassible
* Neighbors automatic via indices
(8)

|
|

— Waypoint graph
« Connect passable points

* Neighbors flexible (but needs to
be stored)

Good for arbitrary terrain (e.g.
3d)

Finding a Path

Path — a list of cells, points
or nodes that agent must
traverse to get to from start
to goal
— Some are better than others
-> measure of quality
Algorithms that guarantee
path called complete
Some algorithms guarantee
optimal path
Others find no path (under
some situations)

Random Trace (Simple Algorithm)

* Agent moves towards goal
* If goal reached, then done
* If obstacle

— Trace around obstacle clockwise or
counterclockwise (pick randomly) until free path
towards goal

* Repeat procedure until goal reached
* (Humans often do this in mazes)

Random Trace (continued)

How will Random Trace do on the following

Not a complete algorithm
Found paths are unlikely to be optimal
Consumes very little memory

2/17/2012

Understanding A*

To understand A*

— Combines breadth-first,
best-first, and Dijkstra
These algorithms use
nodes to represent
candidate paths

m_pParent used to chain iy
nodes sequentially

together to represent

path

— List of absolute

coordinates, instead of
relative directions

class PlannerNode {
public:

PlannerNode *m_pParent;
int m_cellX, m_cellY;

Overview

Breadth-First (1 of 2)

Overall Structure

Use two lists: open and closed « (Create start point node — push
Open list keeps track of onto open list

promising nodes) o
Closed list keeps nodes that * While open list is not empty
are visited, but don’t A. Pop node from open list (call it

correspond to goal

! currentNode)
When .node examined from B. If currentNode corresponds to
open list Id
— Take off goalcone

C. Create new nodes (successors
nodes) for cells around currentNode
and push them onto open list

— Check to see if reached goal
If not reach goal
— Create additional nodes

— Place on closed list D. Put currentNode onto closed list

Breadth-First (2 of 2)

Search from center

Goal was X’

Open list = light grey

— Have not been processed

Closed list = dark grey

— Not goal and have been 7 e P
processed

Arrows represent parent
pointers

Path appears in bold

Breadth-First in Action

Breadth-First Characteristics

Exhaustive search

— Systematic, but not clever

Consumes substantial amount of CPU and
memory

Guarantees to find paths that have fewest
number of nodes in them

— Complete algorithm

— But not necessarily shortest distance!

Best-First (1 of 2)

* Uses problem specific

2/17/2012

knowledge to speed up
search process

— Not an exhaustive search, but

a heuristic search —
* Head straight for goal B B
* Computes distance of every i 1

node to goal

* Algorithm same as breadth
first

— But use distance as priority
value

— Use distance to pick next
node from open list

Best-First in Action
- SIS

I

|
[
T

Looks pretty good! But perfect?

Best-First (2 of 2)

(Sub-optimal paths)

Best-First Characteristics

Heuristic search
Uses fewer resources than breadth-first

On average, much faster than breadth-first
search

Tends to find good paths
— No guarantee to find most optimal path
Complete algorithm

Dijkstra’s Algorithm

* Disregards distance to goal
— Keeps track of cost of every path
— Unlike best-first, no heuristic guessing

* Computes accumulated cost paid to reach a
node from start

— Uses cost (called “given cost”) as priority value to
determine next node in open list

* Use of cost allows it to handle other terrain
— E.g. mud that “slows” or “downbhill”

Dijkstra Characteristics

Exhaustive search
At least as resource intensive as Breadth-First

Always finds the optimal path
— No algorithm can do better
Complete algorithm

2/17/2012

A*

* Use best of Djikstra and Best-First

* Both heuristic cost (estimate) and given cost
(actual) to pick next node from open list

Final Cost = Given Cost + (Heuristic Cost * Heuristic Weight)

I az

W

(Avoids Best-First trap!)

A* Internals (1 of 3)

* Green: start * G: 10 for ver/horiz, 14
* Red: goal for diagonal
* Blue: barrier * H:distance * 10

A* Internals (2 of 3)

* Now check for the low F value in OPEN
— In this case NE = SE = 54, so choose SE

* Going directly to SE is cheaper than E->SE
— Leave start as the parent of SE, and iterate

A* Internals (3 of 3)

* Keep iterating until reach goal and OPEN is empty
* Follow parent links to get short path

[see] ;
[[Reset] e O

http://www.antimodal.com/astar,

A* Characterisitics

* Heuristic search

— Weight can control 0 then like Dijkstra, large then like
best-first

* On average, uses fewer resources than Dijkstra
and Breadth-First

* “Good” heuristic guarantees it will find the most
optimal path
— “Good” as long as doesn’t overestimate actual cost
— For maps, good is “as a bird flies” distance (best-case)

* Complete algorithm

